

3-AXIS DIGITAL DRIVE FOR SERVO & STEPPER MOTORS

Servo Control Modes

- Profile Position-Velocity, Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- · Camming, Gearing
- Position/Velocity/Torque

Stepper Control Modes

- Cyclic Synchronous Position (CSP)
- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Position (Microstepping)
- Position/Velocity/Torque (Servo Mode)
- Indexer, Point-to-Point, PVT
- · Camming, Gearing

Command Interface

- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10V or PWM velocity/torque (servo mode)
- Master encoder (Gearing/Camming)

Communications

- CANopen
- RS-232

Feedback

- Digital quad A/B/X encoder
- Absolute encoders
- Sin/Cos encoders
- Digital Halls

I/O Digital

- 19 HS inputs
- 3 MOSFET outputs
- 6 CMOS HS outputs

I/O Analog

• 3 ±10V inputs

I/O SPI

- 1 HS input
- 3 CMOS HS outputs

Dimensions: mm [in]

• 101.6 x 85.1 x 21 [4.0 x 3.35 x 0.80]

DESCRIPTION

Multinet MP3 is a 3-axis, high-performance, DC powered drive for position, velocity, and torque control of stepper and motors via CANopen. Using advanced FPGA technology, the MP3 provides a significant reduction in the cost per node in multi-axis CANopen systems.

Each of the three axes in the MP3 operate as CANopen nodes under CiA-402 for motion control devices. Supported modes include: Profile Position-Velocity, Interpolated Position Mode (PVT), and Homing.

Servo mode of steppers allows CANopen or digital PWM control of position/velocity/torque. In microstepping mode stepper command pulses and master encoder for camming or gearing is supported.

Model	Ic	Ip	Vdc
MP3-090-10	5	10	14~90

Nineteen high-speed digital inputs with programmable functions are provided. There are six CMOS high-speed outputs. Three MOSFET outputs that are 24V compatible can power motor brakes.

An SPI port is provided with one high-speed input and three high-speed digital outputs. If not used for SPI, the input and outputs are programmable for other functions.

An RS-232 serial port provides a connection to Copley's CME2 software for commissioning, firmware upgrading, and saving configurations to flash memory. The CANopen port is optically isolated.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Fax: 781-828-6547

Page 1 of 38

GENERAL SPECIFICATIONS

UNITED SWER (each axis) Peak furner Continuous current S (3,33) Add (Arms-sine), ±5% Sec Continuous current S (3,33) Add (Arms-sine) per phase (Note 1) NPUT FOWER (models) Hymin-Hymax Hymin-Hymax Horizot Work (13,62) Hymin-Hymax Hymin-Hymax Horizot Work (13,62) Hymin-Hymax Hymin-Hymax Horizot Work (13,62) Hymin-Hymax Hymin-Hymin Hymin-	MODEL	Test conditions: Load = Bipolar st	tepper: 2 mH + 2 Ω per phase. Ambient tem	perature = 25°C, +HV = HV _{max}
Peak Current 10 (7.07) Adc (Arms-sine), ±5% Peak tune 10 (7.07) Adc (Arms-sine), ±5% Peak tune 10 (7.07) Adc (Arms-sine) per phase (Note 1)			MP3-090-10	
Peak time Continuous current Maximum Output Voltage Note I 190 / 190 / 200 / 2	OUTPUT		10 (7 07)	Ada (Arma-sina) +5%
Continuous current Maximum Output Voltage NPUT POWER (module) HWmin-HYmax I peak I peak I peak I peak I was thy I yes peak I was thy I yes pull H-bridge MOSFET, 12.5 kHz center-weighted PWM, space-vector modulation PWM OUTPUTS Type PWM OUTPUTS CANopen: Profile Position/Velocity/Torque, 12-bit resolution Digital position: CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator CONTROL MODES STEPVE CANopen: Profile Position/Velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity/forque, 12-bit resolution Digital stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator CONTROL MODES STEPVE CANopen: Profile Position/Velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Wc velocity /Torque in se			. ,	***
INPUT POWER (module) HVMINI-VITYMAN JPER HVMINI-VITYMAN JPER JPER JPER JPER JPER JPER JPER JPER			5 (3.53)	
HYmin~HYmix Ipeak Ipeak 1		Maximum Output Voltage	Vout = $HV*0.97 - Rout*Iout$	
Ipeak 30 Adc (1 sec) peak Adc continuous (Note 1)	INPUT PO	OWER (module)		
Times Add Continuius (Note 1)				
Aux HV 24 Vdc Vp., 12.3 W max with all encoders @ 500 mA, 2.6 W max with no encoders PVPM OUTPUTS Type PVM ripple frequency Dual H-bridge MOSFET, 12.5 kHz center-weighted PVM, space-vector modulation PVM ripple frequency CANopen: Profile Position/Velocity/Torque, Interpolated Position (PVT), Homing Analog ±10 Vdc velocity/Torque, 12-bit resolution Digital PVM velocity/Torque, 12-bit resolution Digital PVM velocity/Torque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Forque in servor mode). Interpolated Position (PVT), Homing Analog ±10 Vdc, VCCW, Pulse/Direction, Quadrature A/B Discrete 1/0: Camming, internal indexer and function generator COMMAND INPUTS Type Power to 15 Selection Porgrammable, or via digital inputs Analog ±10 Vdc, Iz-orque/velocity control, 12-bit resolution Digital Commits Loops Digital Control Loops Oligital Control Loops Ol		•		
PWM OUTPUTS Type PVM ripple frequency PVM ripple f				
Type PWM ripple frequency DWM ripple frequency CANTROL MODES SERVO CANOPER: Profile Position/Velocity/Torque, Interpolated Position (PVT), Homing Analog ±10 Vdc velocity/torque, 12-bit resolution Digital PWM velocity/torque, 12-bit resolution Digital PWM velocity/torque in servo mode), Interpolated Position (PVT), Homing Analog ±10 Vdc velocity/torque in servo mode), Interpolated Position (PVT), Homing CANOPER: Profile Position/Velocity (Torque in servo mode), Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Torque in servo mode), Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Torque in servo mode), Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Torque in servo mode) Digital PWM velocity (Torque in servo mode) Digital PWM velocity (Torque in servo mode) Digital PWM velocity (Torque in servo mode) Digital Stormat Device 1D Selection Position PWM velocity (Torque in servo mode) Digital Control Loops Commutation Modulation Commutation Modulation Commutation Modulation Commutation Digital Control Loops Current loop: 2.5 kitz (20 μs), Velocity & position loops: 2.5 kitz (400 μs) See note 2. Signals & Canops in Loops (Loops digital loop control Control Loops (Loop	DWM OU			
PVM ripple frequency 25 kHz CONTROL MODES SERVO CANopen: Profile Position/Velocity/Torque, Interpolated Position (PVT), Homing Analog ±10 Vdc velocity/torque, 12-bit resolution Digital PVM velocity/Corque 12-bit resolution Digital pvm velocity/torque Digital position: CVMCCW, Pulsey/Direction, Quadrature A/B Discreece 10	r win oo		al H-bridge MOSFET , 12.5 kHz center-weight	ted PWM, space-vector modulation
CANopen: Profile Position/Velocity/Torque J. Interpolated Position (PVT), Homing Analog ±10 Vdx velocity/torque J. Ebit resolution Digital PWM velocity/torque Digital position: CWCCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator CONTROL MODES STEPPER CANopen: Profile Position/Velocity (Torque in servo mode), Interpolated Position (PVT), Homing Analog ±10 Vdx velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Digital PWM velocity (Torque in servo mode), Iz-bit resolution Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type CANopen, galvanically isolated from drive circuits CAN, H., CAN, L., CAN, GND Programmable, or via digital inputs #10 Vdc, torque/velocity control, 12-bit resolution Digital High speed inputs for PWM velocity/borque and stepper/encoder position commands Quad A/B digital encoder Commutation Camming Quad A/B digital encoder Current, velocity, position, 100% digital loop control Current loop: 12.5 kHz (80 µs), Velocity & position loops: 2.5 kHz (400 µs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 12.5 kHz (80 µs), Velocity & position loops: 2.5 kHz (400 µs) See note 2. Sinusoidal, field-oriented control for stepper motors Current velocity, position in loops: 2.5 kHz (400 µs) See note 2. Sinusoidal, field-oriented control for stepper motors Current velocity position in loops: 2.5 kHz (400 µs) See note 2. Sinusoidal, field-oriented control for stepper motors Current velocity, position in loops: 2.5 kHz (400 µs) See note 2. Sinusoidal, field-oriented control for stepper motors Current velocity fo				, .
Analog ±10 Vdc velocity/torque, 12-bit resolution Digital PVM velocity/torque, 12-bit resolution Digital postion: CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator CONTROL MODE'S STEPER CANopen: Profile Postion/Velocity (Torque in servo mode), 12-bit resolution Analogal PVM velocity (Torque in servo mode), 12-bit resolution Digital stepper position commands. CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type CANopen, galvanically isolated from drive circuits CAN, H, CAN, L, CAN, GAN Device ID Selection Analog ±10 Vdc, torque/velocity control, 12-bit resolution Programmable, or via digital inputs Analog ±10 Vdc, torque/velocity control, 12-bit resolution High speed inputs for PVM velocity/torque and stepper/encoder position commands Digital Comming Digital control Loops Commutation Digital of the Communication of th	CONTRO			
Digital PWM velocity/torque Digital position: CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator CONTROL MODES STEPPER CANopen: Profile Position/Velocity (Torque in servo mode), 12-bit resolution Digital PWM velocity (Torque in servo mode), 12-bit resolution Digital PWM velocity (Torque in servo mode), 12-bit resolution Digital PWM velocity (Torque in servo mode), 12-bit resolution Digital PWM velocity (Torque in servo mode), 12-bit resolution Digital stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INFUTS TORGED TO Camming, internal indexer and function generator COMMAND INFUTS TORGED TO Camming, internal indexer and function generator CAN 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				g
Digital position: CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator CONTROL MODES STEPER CANopen: Profile Position/Velocity (/Torque in servo mode), Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (/Torque in servo mode), 12-bit resolution Digital PVM velocity (/Torque in servo mode) Digital Stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type Signals & format Device ID Selection Personambiols or Value of the Commands or Value of Value			12-bit resolution	
Discrete I/O: Camming, internal indexer and function generator CONTROL MODES STEPPER CANopen: Profile Position/Velocity (Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (Torque in servo mode) Digital PWM velocity (Torque in servo mode) Digital stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type CANopen, galvanically isolated from drive circuits CAN, H, CAN, L, CAN, GND Device ID Selection Analog ±10 Vdc, torque/velocity control, 12-bit resolution Digital High speed inputs for PWM velocity/torque and stepper/encoder position commands Camming Quad A/B digital encoder Digital Control Loops Sampling rate (time) Commutation Modulation Commutation Modulation Commutation Modulation Commetation Minimum load inductance ANALOG INPUTS Number 3 Type ±10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number Number Number Number Number Number (10) pt lime line Number (10) pt lime line High-speed (HS) digital, a lond or a ffect bendwidth High-speed (HS) digital, bendwith will vary with tuning & load inductance Center-weighted PWM with space-vector modulation Minimum load inductance ANALOG INPUTS Number Number Number Number Number Number Number (10) pt lime line Number (10) p			Direction, Ouadrature A/B	
CANopen: Profile Position/Velocity (/Torque in servo mode). Interpolated Position (PVT), Homing Analog ±10 Vdc velocity (/Torque in servo mode) Digital PVM velocity (/Torque in servo mode) Digital stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete 1/C: Camming, internal indexer and function generator COMMAND INPUTS Type CANopen, galvanically isolated from drive circuits CAN_H, CAN_L, CAN_GMD Device ID Selection Programmable, or via digital inputs ±10 Vdc, torque-velocity, control, 12-bit resolution High speed inputs for PVM velocity/torque and stepper/encoder position commands Quiad A/B digital encoder Current, velocity, position. 100% digital loop control Digital Control Loops Sampling rate (time) Current loops: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Simusoidal, field-oriented control for stepper motors Modellion HV Compensation Minimum Isad inductance ANALOG INPUTS Number Type ±10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number Type ±10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number Functions DIGITAL Shell S				
Analog ±10 Vdc velocity (/Torque in servo mode), 12-bit resolution Digital PMW velocity (/Torque in servo mode) Digital Stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type Signals & format Device ID Selection Analog Digital Camming Digital Camming Digital Camming Digital Camming Commands Digital Camming Commands Digital Camming Digital Camming Digital Camming Commodulation Digital Communication Modulation Bandwidths Current, velocity, position. 100% digital loop control Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (90 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Current loop: 2.5 kHz (80 μs), Velocity & position loops: 2	CONTRO			
Digital FWM velocity (/Torque in servo mode) Digital stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type Signals & format Device ID Selection Analog Digital Camming Digital Camming Digital Camming Digital Control Digital Digital Control Loops Sampling rate (time) Commutation Bandwidths HV Compensation Minimum load inductance ANALOS INPUTS Number Type \$10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number type [INI-18] INI-18] INI-18] High-speed (H5) digital, 100 ns RC filter, 10 kp pull-up to +3.3 Vdc, 7V tolerant High-speed (H5) digital, 100 ns RC filter, 10 kp pull-up to +3.3 Vdc, 7V tolerant Halls 9, 74HCL4 Schmitt trigger, V ₁ c = 2.3-4.3 Vdc, V ₁ = 1.3-2 2 Vdc, V ₁ = 2.0-7.1.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.3 Vdc, V ₂ + 2.0-7.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.3 Vdc, V ₂ + 2.0-7.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.3 Vdc, V ₂ + 2.0-7.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.3 Vdc, V ₂ + 2.0-7.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.3 Vdc, V ₃ + 2.0 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.4 Vdc, V ₄ + 2.0.7-1.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.4 Vdc, V ₄ + 2.0.7-1.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.4 Vdc, Vdc, V ₄ + 2.0.7-1.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.4 Vdc, Vdc, V ₄ + 2.0.7-1.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.4 Vdc, Vdc, V ₄ + 2.0.7-1.5 Vdc High-speed (H5) digital, 100 ns RC filter, 10 kg pull-up to +5.4 Vdc, Vdc, Vdc, Vdc, Vdc, Vdc, Vdc, Vdc,				ion (PVT), Homing
Digital stepper position commands, CW/CCW, Pulse/Direction, Quadrature A/B Discrete I/O: Camming, internal indexer and function generator COMMAND INPUTS Type Signals & Format Device ID Selection Analog Digital Camming Digital Camming Digital Camming Digital Camming Digital Camming Digital Camming Digital Control Loops Sampling rate (time) Commutation Bandwidths HV Compensation Modulation Bandwidths HV Compensation HV Compensation HV Compensation HV Compensation HV Compensation HV Compensation Number Type DIGITAL INPUTS Number Number Input Sumber Type 19, 74IVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = 1.1~2 Vdc, V, = 0.8~1.5 Vdc, V, + = 0.3~1.2 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, V tolerant Halls Pint Speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, V tolerant Functions Digital CourtPuts Digital CourtPuts Functions Digital CourtPuts Functions DC POWER OUTPUT Number Ratings RXD, TXD, Gnd for operation as a DTE device Full-duplex, DTE serial prior for view for programmable to 19,200, 57,600, 115,200 Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200 Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200 Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200 Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				
COMMAND INPUTS Type Signals & format Device ID Selection Analog Digital Camming Digital Camming Digital Camming Digital Camming Digital Control Digital Control Digital Control Commutation Bandwidths HV Compensation HV Co				
Type CANopen, galvanically isolated from drive circuits Signals & format Device ID Selection Programmable, or via digital inputs Analog Digital High speed inputs for PWM velocity/torque and stepper/encoder position commands Quad A/B digital encoder Quad A/B digital encoder Digital CONTROL Digital Control Loops Sampling rate (time)		Discrete I/O: Camming, internal	indexer and function generator	
Signals & format Device ID Selection Analog Device ID Selection Analog analog analog analog between the selection analog Digital Camming Digital Control Loops Sampling rate (time) Commutation Modulation Sampling rate (time) Commutation Modulation Bandwidths Current loop: 1.2 S kHz (80 μs). Pelocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Center-eighted PlwM with space-vector modulation Current loop: 2.5 kHz (80 μs). Pelocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Center-eighted PlwM with space-vector modulation Current loop: 2.5 kHz (20 μs). Pelocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Center-eighted PlwM with space-vector modulation Current loop: 2.5 kHz (20 μs) and inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth 200 μH line-line ANALOG INPUTS Number, type 19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = 1.1~2 Vdc, V, = 0.8~1.5 Vdc, V, + = 0.3~1.2 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, VV tolerant Plals Plals 9, 74HC14 Schmitt trigger, Vcc = 2.5~3.5 Vdc, V, = 1.3~2.2 Vdc, V, + = 4.0.7~1.5 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5.3 Vdc, V, tolerant Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number 9 Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable to 45 Vdc tolerant; Output current:-8 mA source @ V _{out} = 2.4 V, 6 mA sink at V _{out} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number 3 Signals 45 Vdc, 500 mA max each output, thermal and short-circuit protected Paul to the functions Position Programmable to 19,200, 57,600, 115	COMMAN			
Device ID Selection Analog Analog Analog Digital Camming High speed inputs for PWM velocity/torque and stepper/encoder position commands Camming Quad A/B digital encoder DIGITAL CONTROL Digital Control Loops Sampling rate (time) Current, velocity, position. 100% digital loop control Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Center-weighted PWM with space-vector modulation Bandwidths Current loop: 2.5 kHz typical, bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage Changes Changes Changes Changes Changes Changes Changes Change				circuits
Analog Digital Analog Digital Acamming Pide High speed inputs for PWM velocity/torque and stepper/encoder position commands Quad A/B digital encoder Quad A/B digital encoder Pigital Control Loops Sampling rate (time) Current, velocity, position. 100% digital loop control Current protection Pide A/B digital encoder Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loop: 12.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Current loops: 12.5 kHz (400 μs)				
Digital Camming Quad A/B digital encoder DIGITAL CONTROL Digital Control Loops Sampling rate (time) Current, velocity, position. 100% digital loop control Sinusoidal, field-oriented control for stepper motors Center-weighted PWM with space-vector modulation Sinusoidal, field-oriented control for stepper motors Center-weighted PWM with space-vector modulation Current loop: 2.5 kHz typical, bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth 200 μH line-line ANALOG INPUTS Number 3 10 Vdc, 12-bit resolution, differential 200 μH line-line DIGITAL INPUTS Number, type 19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = 1.1~2 Vdc, V _τ = 0.8~1.5 Vdc, V _t + = 0.3~1.2 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant SPI port MISO input, 47 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant Punctions Prunctions Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number 9 10 Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OF} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number 3 Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				esolution
DIGITAL CONTROL Digital Control Loops Sampling rate (time) Commutation Modulation Bandwidths HV Compensation Minimum load inductance ANALOG INPUTS Number INIV-18 INIV-18 INIV-18 INIV-18 INIV-18 INIV-18 INIV-18 INIV-18 INIV-19 INIV-18 INIV-18 INIV-19 INIV-18 INIV-18 INIV-18 INIV-18 INIV-19 INIV-18 IN				
Digital Control Loops Sampling rate (time) Current loop: 1.2.5 kHz (80 μs), Velocity & position loops: 2.5 kHz (400 μs) See note 2. Sinusoidal, field-oriented control for stepper motors Center-weighted PWH with space-vector modulation Bandwidths HV Compensation Minimum load inductance ANALOG INPUTS Number Type 10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number, 19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = 1.1~2 Vdc, V ₁ - = 0.8~1.5 Vdc, V ₁ + = 0.3~1.2 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant Functions DIGITAL OUTPUTS Number [OUT1~3] DIGITAL OUTPUTS Number [OUT1~9] Functions DC POWER OUTPUT Number Ratings RS-232 PORT Signals Mode Mode Ucurrent, velocity, position. 100% glid lalops on the Velocity in the Value of the Value on the Value on the Value of the Valu		Camming	Quad A/B digital encoder	
Sampling rate (time) Commutation Modulation Bandwidths HV Compensation Minimum load inductance ANALOG INPUTS Number Type DIGITAL INPUTS Number (111) 111 111 111 111 111 111 111 111 11	DIGITAL			
Commutation Modulation Center-weighted PVM with space-vector modulation Center-weighted PVM with space-vector modulation Current loop: 2.5 kHz typical, bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage do not affect bandwidth will vary with tuning & load inductance Changes in bus voltage for the foliage for the foliag				
Modulation Bandwidths HV Compensation Minimum load inductance ANALOG INPUTS Number Type 3 Type 10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number, type [IN1~18] [IN19] Halls Functions Functions DIGITAL OUTPUTS Number [OUT1~3] Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads Functions DIGITALOUTPUTS Number [OUT4~9] DIGITALOUTPUTS Number Functions DEFAULT AS A SPI port MISS of the series of the se				
HV Compensation Minimum load inductance ANALOG INPUTS Number Type 3 Type 410 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number, type [INI ~18] [INI ~18] [INI ~18] [INI 9] Halls Port MISO input, 47 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant Functions DIGITAL OUTPUTS Number [OUT1~3] DIGITAL OUTPUTS Number [OUT1~4] Popen-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads Functions DC POWER OUTPUT Number Ratings RS-232 PORT Signals Mode RXD, TxD, Gnd for operation as a DTE device Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				
Minimum load inductance 200 μH line-line 3				
ANALOG INPUTS Number Type DIGITAL INPUTS Number, type [IN1~18] [IN19] High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant Functions DIGITAL OUTPUTS Number [OUT1~3] Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc ser and sover, 90 SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output Current:-8 mA source @ V _{oH} = 2.4V, 6 mA sink at V _{oL} = 0.5V Functions DC POWER OUTPUT Number RS-232 PORT Signals Mode RS-232 PORT Signals Mode RAD, 7xD, Gnd for operation as a DTE device Full-duplex, DTE series over, or or reset. Programmable to 19,200, 57,600, 115,200 Functions Daud Test. Support or or reset. Programmable to 19,200, 57,600, 115,200 Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				width
Number Type ±10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number, type [IN1-18] 19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = 1.1~2 Vdc, V _τ = 0.8~1.5 Vdc, V _H + = 0.3~1.2 Vdc [IN1-18] 19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = 1.1~2 Vdc, V _τ = 0.8~1.5 Vdc, V _H + = 0.3~1.2 Vdc [IN1-18] 19, 74LVC14 Schmitt trigger, V _τ + 2.5~3.5 Vdc, V _τ bull-up to +3.3 Vdc, 7V tolerant 19, 74HC14 Schmitt trigger, V _τ + = 2.5~3.5 Vdc, V _τ = 1.3~2.2 Vdc, V _τ + = ±0.7~1.5 Vdc 19, 19, 19, 10, 10 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant 19, 10 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant 19, 10 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant 19, 10 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant 19, 10 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant 19, 10 ns RC filter, 10 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable 19, 10 ns RC filter 19, 10 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant 19, 10 ns RC filter 19, 10 ns RC filte	ANALOC		200 μπ lille-lille	
Type ±10 Vdc, 12-bit resolution, differential DIGITAL INPUTS Number, type [IN1-18] High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant [IN19] SPI port MISO input, 47 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant Halls 9, 74HC14 Schmitt trigger, V _↑ + = 2.5~3.5 Vdc, V _↑ - 1.3~2.2 Vdc, V _↑ + ± 0.7~1.5 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5.3 Vdc, V _↑ + ± 0.7~1.5 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number [OUT1~3] Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads [OUT4~9] SPI port MOSI, SCLK, SSI signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200	ANALOG		3	
Number, type [19, 74LVC14 Schmitt trigger, Vcc = 3.3 Vdc, + = $1.1 \sim 2$ Vdc, V _r = $0.8 \sim 1.5$ Vdc, V _H + = $0.3 \sim 1.2$ Vdc [IN1 ~ 18] High-speed (HS) digital, 100 ns RC filter, 10 k Ω pull-up to +3.3 Vdc, 7V tolerant SPI port MISO input, 47 ns RC filter, 10 k Ω pull-up to +3.3 Vdc, 7V tolerant 9, 74HC14 Schmitt trigger, V _r + = $2.5 \sim 3.5$ Vdc, V _r = $1.3 \sim 2.2$ Vdc, V _H = $\pm 0.7 \sim 1.5$ Vdc High-speed (HS) digital, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc, 24V tolerant Pefault functions Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number 9 [OUT1 ~ 3] Open-drain MOSFET with 1 k Ω pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4 V, 6 mA sink at V _{OL} = 0.5 V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number 3 A Storm S				
High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant SPI port MISO input, 47 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant SPI port MISO input, 47 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant Halls 9, 74HC14 Schmitt trigger, V _τ + = 2.5~3.5 Vdc, V _τ - = 1.3~2.2 Vdc, V _t , 24V tolerant Default functions are shown above, programmable to other functions DIGITAL OUTPUTS	DIGITAL			
SPĬ port MISO input, 47 ns RC filter, 10 kΩ pull-up to +3.3 Vdc, 7V tolerant 9, 74HC14 Schmitt trigger, V _T + = 2.5~3.5 Vdc, V _T - = 1.3~2.2 Vdc, V _T + = ±0.7~1.5 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number 9				
Halls 9, 74HC14 Schmitt trigger, V _T + = 2.5~3.5 Vdc, V _T - = 1.3~2.2 Vdc, V _H + = ±0.7~1.5 Vdc High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number 9 [OUT1~3]				
High-speed (HS) digital, 100 ns RC filter, 10 kΩ pull-up to +5 Vdc, 24V tolerant Default functions are shown above, programmable to other functions DIGITAL OUTPUTS Number [OUT1~3] Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads [OUT4~9] SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number Ratings RS-232 PORT Signals Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				
FunctionsDefault functions are shown above, programmable to other functionsDIGITAL OUTPUTS Number [OUT1~3]9 Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V FunctionsDC POWER OUTPUT Number Ratings3 +5 Vdc, 500 mA max each output, thermal and short-circuit protectedRS-232 PORT Signals ModeRxD, TxD, Gnd for operation as a DTE device Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200			High-speed (HS) digital, 100 ns RC filter, 1	$0 \text{ k}\Omega$ pull-up to +5 Vdc, 24V tolerant
Number [OUT1~3]9[OUT1~3]Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V Default functions are shown above, programmable to other functionsDC POWER OUTPUT Number Ratings3 RS-232 PORT SignalsRSP-232 PORT ModeRXD, TXD, Gnd for operation as a DTE device Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				
Open-drain MOSFET with 1 kΩ pull-up with series diode to +5 Vdc 300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads	DIGITAL			
300 mAdc max, +30 Vdc max. Functions programmable External flyback diodes required for driving inductive loads [OUT4~9] SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number Ratings 3 Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				a series diade to ±5 V/ds
External flyback diodes required for driving inductive loads SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number 3 Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals RxD, TxD, Gnd for operation as a DTE device Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200		[0011~3]		
[OUT4~9] SPI port MOSI, SCLK, SS1 signals, 74AHCT240 line drivers; +5 Vdc tolerant; Output current:-8 mA source @ V _{OH} = 2.4V, 6 mA sink at V _{OL} = 0.5V Default functions are shown above, programmable to other functions DC POWER OUTPUT Number 3 Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals RxD, TxD, Gnd for operation as a DTE device Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				
Functions Default functions are shown above, programmable to other functions DC POWER OUTPUT Number 3 Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals RxD, TxD, Gnd for operation as a DTE device Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200		[OUT4~9]	SPI port MOSI, SCLK, SS1 signals, 74AHC	T240 line drivers; +5 Vdc tolerant;
DC POWER OUTPUT Number Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals Mode RxD, TxD, Gnd for operation as a DTE device Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200		Functions	Output current: -8 mA source @ V _{OH} = 2.4'	V, 6 mA sink at V _{ol} = 0.5V
Number 3 +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals	DC DC !!!		Default functions are shown above, progra	initiable to other functions
Ratings +5 Vdc, 500 mA max each output, thermal and short-circuit protected RS-232 PORT Signals RxD, TxD, Gnd for operation as a DTE device Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200	DC POWI		3	
RS-232 PORT Signals Mode RxD, TxD, Gnd for operation as a DTE device Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				ll and short-circuit protected
Signals RxD, TxD, Gnd for operation as a DTE device Mode Full-duplex, DTE serial port for drive setup and control, 9,600 to 115,200 Baud Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200	RS-232 F			·
Baud rate defaults to 9,600 after power-on or reset. Programmable to 19,200, 57,600, 115,200				
		Mode		
FIGURE ASCIT OF BIHALY FORMAL		Protocol		n or reset. Programmable to 19,200, 57,600, 115,200
		1100001	ASCIT OF DIFFICIAL	

Notes

- 1) Forced-air cooling may be required for operation at full output power on all axes.
- 2) Default settings for current and position loop frequencies. User programmable for other frequencies.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00 $\,$

Tel: 781-828-8090 Fax: 781-828-6547 Page 2 of 38

GENERAL SPECIFICATIONS

FEEDBACK (each axis)

Incremental:

Absolute:

Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required) 5 MHz maximum line frequency (20 M counts/sec) Digital Incremental Encoder

MAX14891 differential line receiver with fault detection for A, B, X inputs Analog Incremental Encoder

Sin/cos format (sin+, sin-, cos+, cos-), differential, 1 Vpeak-peak, ServoTube motor compatible, BW $> 300\ kHz$

Digital Index (X, /X) input

SSI Clock (X, /X), Data (A, /A) signals EnDat

Clock (X, /X), Data (A, /A) signals Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A Absolute A SD+, SD- (A, /A) signals, 2.5 or 4 MHz, 2-wire half-duplex communication

Status data for encoder operating conditions and errors

BiSS (B&C) MA+, MA- (X, /X), SL+, SL- (A, /A) signals, 4-wire, clock output from MP3, data returned from encoder

Secondary:

3 MAX3362 differential line receiver/transmitters, programmable as incremental encoder A/B/X,

or absolute full-duplex X (clock) and A (data), or half-duplex A (clock/data) 9 74HC14 Schmitt trigger, Vcc = 5.0V, V_T + = $1.8 \sim 3.5 \text{ Vdc}$, V_T - = $1.0 \sim 2.2 \text{ Vdc}$, V_H + = $0.47 \sim 1.47 \text{ Vdc}$ Halls

MOTOR CONNECTIONS (each axis)

Phase U, V, W Phase A, /A, B, /B PWM outputs to 3-phase ungrounded Wye or delta connected brushless motors, or DC brush motors

Dual PWM H-bridge outputs for each axis to drive stepper motors with bipolar windings

Output functions are individually programmable to drive servo or stepper motors

Encoders See FEEDBACK section above Hall & encoder power See DC POWER OUTPUTS section

PROTECTIONS

HV Overvoltage +HV > 90 Vdc Drive outputs turn off until $+HV < HV_{max}$ (See Input Power for HV_{max})

HV Undervoltage +HV < +14 VdcDrive outputs turn off until +HV > +14 Vdc

Heat plate > 70°C. Drive over temperature Drive outputs turn off

Short circuits Output to output, output to ground, internal PWM bridge faults I2T Current limiting Programmable: continuous current, peak current, peak time Motor over temperature Digital inputs programmable to detect motor temperature switch Feedback Loss

Inadequate analog encoder amplitude or missing incremental encoder signals

MECHANICAL & ENVIRONMENTAL

Size mm [in]

Weight

101.6 \times 85.1 \times 21 [4.0 \times 3.35 \times 0.80] MP3: 0.09 kg [0.20 lb], MP3 + DevKit: 0.38 kg [0.84 lb] 0 to +45°C operating, -40 to +85°C storage 0 to 95%, non-condensing Ambient temperature Humidity 2 g peak, 10~500 Hz (sine), IEC60068-2-6 Vibration

10 g, 10 ms, half-sine pulse, IEC60068-2-27 Shock

Contaminants Pollution dearee 2 Environment IEC68-2: 1990

Forced air cooling may be required for continuous power output Cooling

AGENCY STANDARDS CONFORMANCE (PENDING)

In accordance with EC Directive 2004/108/EC (EMC Directive)

EN 55011: 2009/A1:2010 CISPR 11:2009/A1:2010 Industrial, Scientific, and Medical (ISM) Radio Frequency Equipment -

Electromagnetic Disturbance Characteristics - Limits and Methods of Measurement

Group 1. Class A

EN 61000-6-1: 2007 Electromagnetic Compatibility (EMC) - Part 6-1: Generic Standards -

Immunity for residential, Commercial and Light-industrial Environments

In accordance with EC Directive 2006/95/EC (Low Voltage Directive)

IEC 61010-1:2001 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use

Underwriters Laboratory Standards

Electrical Equipment for Measurement, Control and Laboratory Use; UL 61010-1, 2nd Ed.: 2008

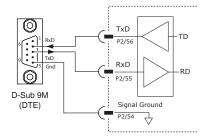
Part 1: General Requirements

III File Number F249894

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01568 Rev 00 Page 3 of 38

CME2 SOFTWARE

Drive setup is fast and easy using CME 2 software. All of the operations needed to configure the drive are accessible through this powerful and intuitive program. Auto-phasing of brushless motor Hall sensors and phase wires eliminates "wire and try". Connections are made once and CME 2 does the rest thereafter. Encoder wire swapping to establish the direction of positive motion is eliminated.


Motor data can be saved as .CCM files. Drive data is saved as .CCX files that contain all drive settings plus motor data. This eases system management as files can be cross-referenced to drives. Once a drive configuration has been completed systems can be replicated easily with the same setup and performance.

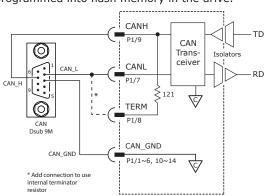
RS-232 COMMUNICATIONS

The MP3 is configured via a three-wire, full-duplex RS-232 port that operates as a DTE from 9,600 to 115,200 Baud. CME 2 software communicates with the drive over this link for commissioning and adjustments.

When operating as a stand-alone drive that takes command inputs from an external controller, CME 2 is used for configuration. When operated as a CAN node, CME 2 is used for programming before and after installation in a CAN network. The MP3 can also be controlled via CME 2 while it is in place as a CAN node. During this process, drive operation as a CAN node is suspended. When adjustments are complete, CME 2 relinquishes control of the drive and returns it to the CAN node state. Multiple drives can communicate over a single RS-232 port by daisy-chaining the master drive to other drives using CAN cables. The master drive does the RS-232 communication with the system and echoes the commands to the other drives over the CAN bus.

RS232 PORT

CME2 -> TOOLS -> COMMUNICATIONS WIZARD


CANOPEN COMMUNICATIONS

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

The MP3 uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus. Up to seven digital inputs can be used to produce CAN Node-IDs from 1~127, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network.

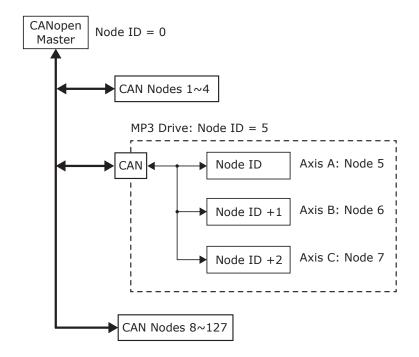
CANOPEN CONNECTIONS

The graphic below shows connections between the MP3 and a Dsub 9M connector on a CAN card. If the MP3 is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown. The node Node-ID of the MP3 may be set by using digital inputs, or programmed into flash memory in the drive.

CME2 -> Basic Setup -> Operating Mode Options

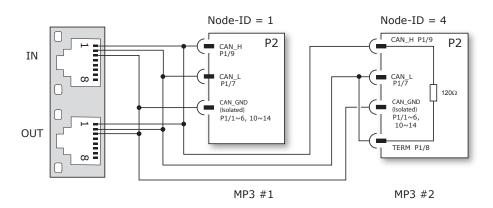
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01568 Rev 00

Page 4 of 38



CANOPEN DEVICE ID SWITCHES

The Node-ID of the MP3 can be set in flash memory, or read from 16-position switches via an SPI port. An SPI port circuit and switches is included in the MP3 Development Kit. Users can add this circuit to their own mounting boards. The Node ID can be set in flash memory using Copley CME2 software.


On a CAN network, the MP3 will appear as three consequtive nodes. When the "base" Node-ID is configured either via SPI or flash programming, it will address Axis A. Then, Axes B, and C will be automatically assigned Node-ID's based on the base ID. The Axis-B ID will be Axis-A ID +1. Axis-C will be Axis-A +2.

Whatever Node-ID is assigned to the MP3, a total of three IDs with consecutive values will result. In the graphic below, the base ID of the MP3 is set to 5 resulting in IDs of 5,6, and 7 for the three axes. Node-ID 0 is reserved for the CANopen Master, and the maximum Node-ID allowed is 127. This leaves ID $1\sim4$, and $8\sim127$ available for use by other devices on the network.

CANOPEN CONNECTIONS FOR MULTIPLE MODULES

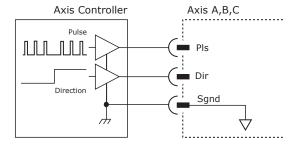
The graphic below shows two MP3 wired to a CAN network. The lowest Node-ID allowable on a CAN network is 1 which will allocate IDs 1,2, and 3 for MP3 #1. MP3 #2 must have a minimum Node-ID equal to Node-ID#1+3 which equals 4 as shown.

When the MP3 is the last node on the CAN bus, the internal terminator can be used by connecting it as shown.

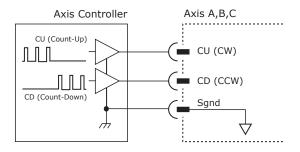
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Tel: 781-828-8090

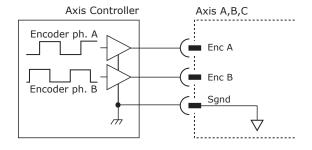
Fax: 781-828-6547 Page 5 of 38



DIGITAL COMMAND INPUTS


Digital commands are single-ended format and should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. The active edge (rising or falling) is programmable for the Pulse/Dir and CU/CD formats.

DIGITAL POSITION


PULSE & DIRECTION

CU/CD (PULSE UP / PULSE DOWN)

QUAD A/B ENCODER


HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Operating Mode Options

HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Operating Mode Options

This screen shows the configuration screen for Pulse & Direction. CU/CD and Quad A/B encoder are selectable on this screen, too.

SIGNALS & PINS

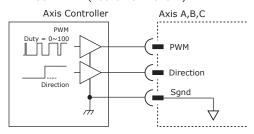
The pins in the chart are on connector P2. The functions shown are the defaults. These can be programmed for other functions.

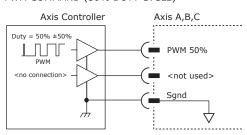
	Functions		Axis	6 A	Axis	вВ	Axis	C C
	runctions		P3 Pins	Signal	P3 Pins	Signal	P3 Pins	Signal
Enc A	Pulse	CW	27	[IN5]	33	[IN11]	39	[IN17]
Enc B	Dir	CCW	28	[IN6]	34	[IN12]	40	[IN18]

Note:

1) The functions shown for [IN5~6], [IN11~12], and [IN17~18] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.

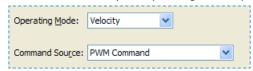
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-01568 Rev 00 Page 6 of 38



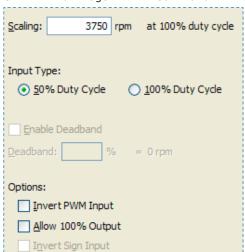

DIGITAL COMMAND INPUTS (CONT'D)

DIGITAL TORQUE, VELOCITY

PWM COMMAND (100% DUTY CYCLE)



PWM COMMAND (50% DUTY CYCLE)



HOW IT LOOKS IN CME2

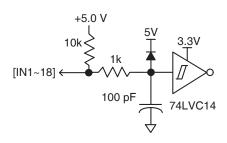
CME2 -> Basic Setup -> Operating Mode Options

CME2 -> Main Page-> PWM Command

This screen shows the 50% Duty Cycle selection. Other modes are selectable via radio buttons and pull-down menus for Operating Mode and Command Source.

SIGNALS & PINS

The pins in the chart are on connector P2


E	Function		Axis A		Axis B		Axis C	
Fui	ICCIOII	P3 Pins	Signal	P3 Pins	Signal	P3 Pins	Signal	
PWM	PWM 50%	27	[IN5]	33	[IN11]	39	[IN17]	
Polarity	n/a	28	[IN6]	34	[IN12]	40	[IN18]	

Note:

1) The functions shown for [IN5~6], [IN11~12], and [IN17~18] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.

DIGITAL COMMAND INPUTS

HIGH SPEED INPUTS [IN1~18] 5V tolerant

HI/LO DEFINITIONS: INPUTS

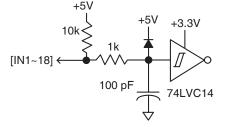
Input	State	cate Condition	
	HI	Vin >= 1.1~2.2 Vdc	
IN1~19	LO	Vin <= 0.8~1.5 Vdc	
	Vhys	0.3~1.2 Vdc	

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-01568 Rev 00 Page 7 of 38

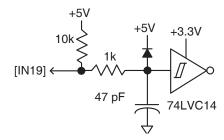
INPUTS

DIGITAL INPUTS

MP3 has 19 high-speed digital inputs, all of which have programmable functions.


They are compatible with 5V logic and have 100 ns R/C filters when driven by devices with active pull-up/pull-down outputs.

Programmable functions of the digital inputs include:


- Drive Enable
- Positive Limit switch
- Negative Limit switch
- Digital Command Inputs
- · Home switch
- Drive Reset
- Motion abort

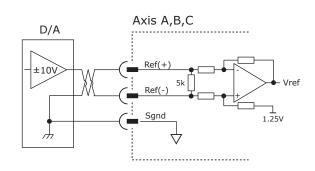
HIGH-SPEED DIGITAL INPUTS

+5 VDC MAX

HIGH-SPEED DIGITAL INPUT SPI PORT MISO SIGNAL +5 VDC MAX

SIGNALS & PINS

The pins in the chart are on connector P2. The functions shown are the defaults. All of these inputs can be programmed for other functions.


P2 Signal Ground pins are: 1, 2, 21, 22, 41, 42, 53, 54.

	Functions				Axis A		Axis B		Axis C	
		runction	5		P3 Pins	Signal	P3 Pins	Signal	P3 Pins	Signal
		Enable			23	[IN1]	29	[IN7]	35	[IN13]
		Pos Limi	t		24	[IN2]	30	[IN8]	36	[IN14]
	Neg Limit			25	[IN3]	31	[IN9]	37	[IN15]	
					26	[IN4]	32	[IN10]	38	[IN16]
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	33	[IN11]	39	[IN17]
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	34	[IN12]	40	[IN18]
	SPI Port MISO input								52	[IN19]

ANALOG INPUTS

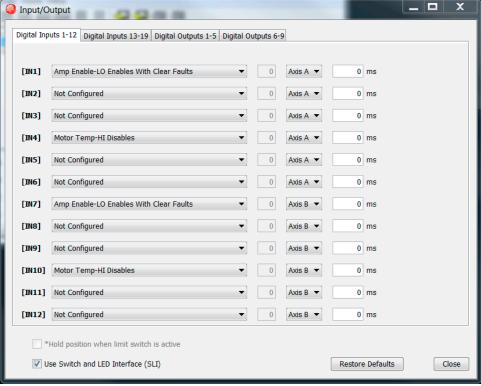
The analog inputs have a ± 10 Vdc range. As reference inputs they can take position/velocity/torque commands from a controller.

Functions	Axis A	Axis B	Axis C	
Functions	P3 Pins	P3 Pins	P3 Pins	
Ref(+)	3	5	7	
Ref(-)	4	6	8	

Fax: 781-828-6547

Page 8 of 38

Tel: 781-828-8090



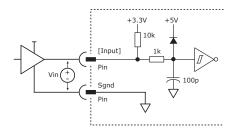
DIGITAL INPUT DETAILS

HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Inputs 1-12

Notes:

The functions for all of the inputs are programmable. The functions shown above are defaults for the combinations listed below:


- [IN1] and [IN7] are the defaults for the Axis-A and Axis-B Enable functions.
- [IN2~4] and [IN8~10] are typically used for pos/neg limit switches, and Home switch.
- [IN5~6] and [IN11~12] are the digital command input defaults for position, velocity, or torque control.

DIGITAL INPUT PINS AND FUNCTIONS

	Functions					Axis A		Axis B	
		Function	5		P3 Pins	Signal	P3 Pins	Signal	
		Enable			23	[IN1]	29	[IN7]	
	Positive Limit Switch					[IN2]	30	[IN8]	
	Nega	ative Limit	Switch		25	[IN3]	31	[IN9]	
Home Switch					26	[IN4]	32	[IN10]	
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	33	[IN11]	
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	34	[IN12]	

HIGH SPEED DIGITAL INPUTS [IN1~IN12]

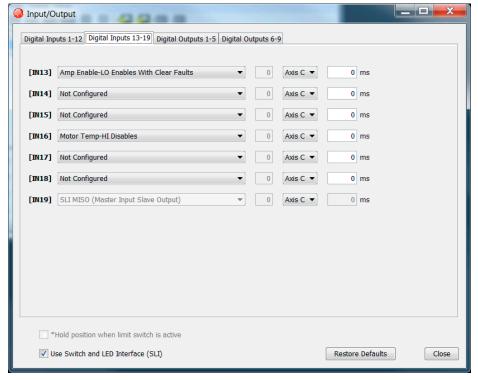
5V tolerant

HIGH SPEED DIGITAL INPUTS [IN1~IN12] 5V tolerant

Input	State	Condition	
	HI	Vin >= 1.1~2.2 Vdc	
IN1~12	LO	Vin <= 0.8~1.5 Vdc	
	Vhys	0.3~1.2 Vdc	

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Fax: 781-828-6547 Tel: 781-828-8090 P/N 16-01568 Rev 00

Page 9 of 38



DIGITAL INPUT DETAILS

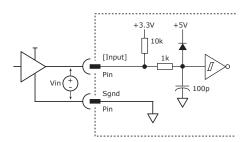
HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Inputs 13-19

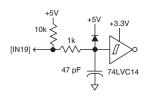
Notes:

The functions for all of the inputs are programmable. The functions shown above are defaults for the combinations listed below:

- [IN13] is the default for the Axis-C Enable function.
- [IN14~16] are typically used for pos/neg limit switches, and Home switch.
- [IN17~18] are the digital command input defaults for position, velocity, or torque control.
- [IN19] is the MISO input when SPI is used.


DIGITAL INPUT PINS AND FUNCTIONS

	Functions					
		runction	5		P3 Pins	Signal
		Enable			35	[IN13]
	Posi	tive Limit	Switch		36	[IN14]
	Negative Limit Switch					
		Home Swi	tch		38	[IN16]
Enc A	Pulse	CW	PWM	PWM 50%	39	[IN17]
Enc B	Enc B Dir CCW Polarity n/a					
	SPI MISO					


HI/LO DEFINITIONS: INPUTS

Input	State	Condition	
	HI	Vin >= 1.1~2.2 Vdc	
IN13~19	LO	Vin <= 0.8~1.5 Vdc	
	Vhys	0.3~1.2 Vdc	

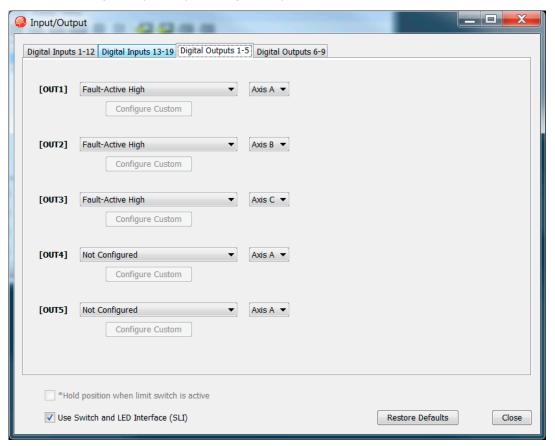
HIGH SPEED DIGITAL INPUTS [IN13~IN18] 5V tolerant

HIGH SPEED INPUT [IN19] SPI MISO 5V tolerant

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Tel: 781-828-8090

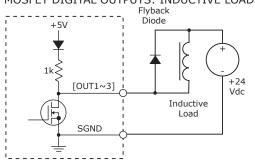
Fax: 781-828-6547 Page 10 of 38



DIGITAL OUTPUT DETAILS

HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Outputs 1-6


MOSFET OUTPUTS & PINS

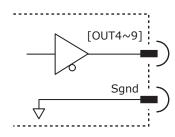
Function	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

HI/LO DEFINITIONS: OUTPUTS 1~3

Output	State	Condition
OUT1~3	HI	MOSFET OFF
0011~3	LO	MOSFET ON

MOSFET DIGITAL OUTPUTS: INDUCTIVE LOADS

HIGH SPEED OUTPUTS & PINS


Output	P3 Pin	SPI Signals
[OUT4]	46	
[OUT5]	47	

HI/LO DEFINITIONS: OUT4~5

Output	State	Condition
OUT4~5	HI	Vout >= 2.2 Vdc
0014~5	LO	Vout <= 0.8 Vdc

HIGH SPEED DIGITAL OUTPUTS [OUT4~5] 74HCT125

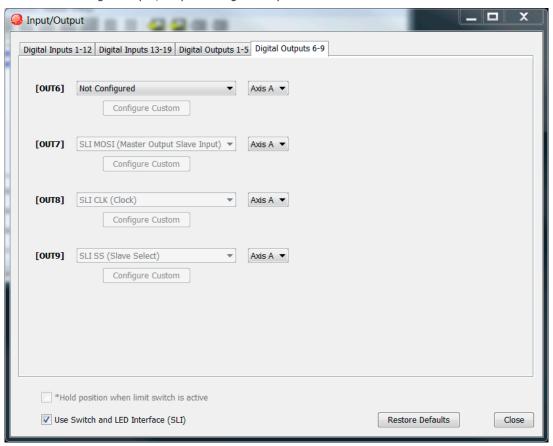
5V max

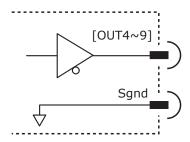
Tel: 781-828-8090

Note: All outputs are programmable for other functions than the ones shown here.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Fax: 781-828-6547 Page 11 of 38




DIGITAL OUTPUT DETAILS

HOW IT LOOKS IN CME2

CME2 -> Main Page-> Input/Output -> Digital Outputs 4-9

HIGH SPEED DIGITAL OUTPUTS [OUT6~9] 74HCT125 5V max

HIGH SPEED DIGITAL OUTPUTS [OUT6~9]

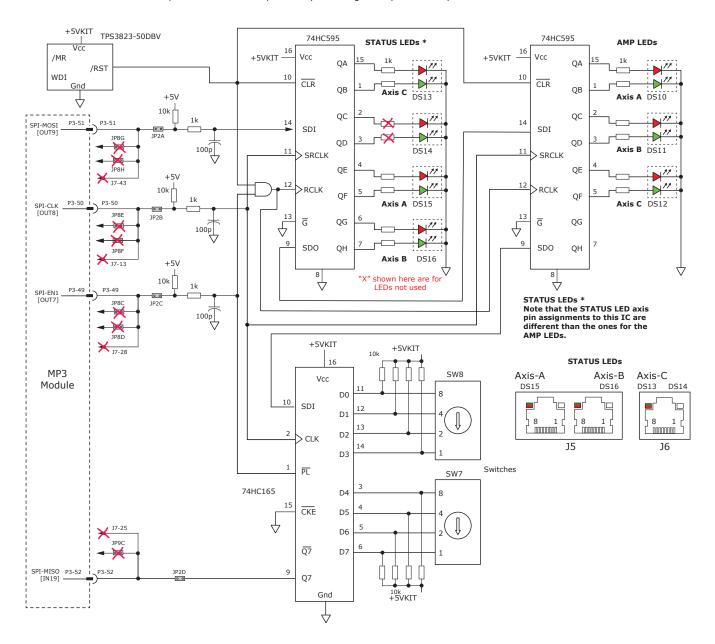
Output	P3 Pin	SPI Signals
[OUT6]	48	
[OUT7]	49	SPI EN1
[OUT8]	50	SPI Clock
[OUT9]	51	SPI MOSI

Note: All outputs are programmable for other functions than the ones shown here.

HI/LO DEFINITIONS: OUTPUTS

Output	State	Condition
OUT6~9	HI	Vout >= 2.2 Vdc
0016~9	LO	Vout <= 0.8 Vdc

Tel: 781-828-8090 Fax: 781-828-6547 Page 12 of 38



SPI PORT

This graphic shows all of the SPI port outputs and input together. The connections shown are those used on the MP3 Development Kit as an example of the port's usage for inputs and outputs.

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
[OUT7~9]	HI	Vout >= 2.2 Vdc
[0017~9]	LO	Vout <= 0.8 Vdc

SIGNALS & PINS

	Output	P2 Pin	SPI Signals
ſ	[OUT7]	49	SPI EN1
	[OUT8]	50	SPI Clock
	[OUT9]	51	SPI MOSI
	[IN19]	52	SPI MISO

If these signals are not used for the SPI port , they are programmable for other functions.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Tel: 781-828-8090 Fax: 781-828-6547 Page 13 of 38

FEEDBACK CONNECTIONS

Motor connections consist of: phases, Halls, encoder, thermal sensor, and brake. The phase connections carry the drive output currents that drive the motor to produce motion. The Hall signals are three digital signals that give absolute position feedback within an electrical commutation cycle of brushless motors. Encoder signals give position feedback and are used for velocity and position modes, as well as sinusoidal commutation. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. A brake can provide a fail-safe way to prevent movement of the motor when the drive is shut-down or disabled.

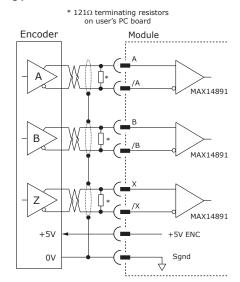
QUAD A/B INCREMENTAL ENCODER WITH FAULT PROTECTION (PRIMARY FEEDBACK ONLY)

Encoders with differential line-driver outputs provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX14891 receiver has differential inputs with fault protections for the following conditions:

Short-circuits line-line: This produces a near-zero voltage between A & /A, B & /B, and X & /X which is below the differential fault threshold.

Open-circuit condition: A 121Ω terminator resistor will pull the inputs together if either side (or both) is open. This will produce the same fault condition as a chart significance the inputs.

This will produce the same fault condition as a short-circuit across the inputs.


Low differential voltage detection: This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV.

 $\pm 25kV$ ESD protection: The MAX14891 has protection against high-voltage discharges using the Human Body Model.

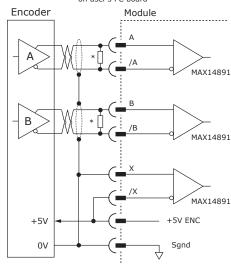
Extended common-mode range: A fault occurs if a single input voltage is outside of the range of -18.5V to +18.5V

If encoder fault detection is selected (CME2 main page, Configure Faults block, Feedback Error) and an encoder with no index is used, then the X and /X inputs must be wired as shown below to prevent the unused index input from generating an error for low differential voltage detection.

DIGITAL QUADRATURE ENCODER INPUT 5V

CME2 -> Motor/Feedback -> Feedback

Motor Encoder: Primary Incremental


PRIMARY FEEDBACK CONNECTIONS

The pins in the chart are on connector P4

Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Enc A	5	19	33
Enc /A	7	21	35
Enc B	9	23	37
Enc /B	11	25	39
Enc X	13	27	41
Enc /X	15	29	43
+5V Out	17	31	45
Signal Gnd	18	32	46

A/B CONNECTIONS (NO INDEX) 5V

* 121Ω terminating resistors on user's PC board

SECONDARY FEEDBACK CONNECTIONS

The pins in the chart are on connector P4

Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Sec Enc A	6	20	34
Sec Enc /A	8	22	36
Sec Enc B	10	24	38
Sec Enc /B	12	26	40
Sec Enc X	14	28	42
Sec Enc /X	16	30	44
+5 ENC	17	31	45
Signal Gnd	1~4	,18,32,4	5,56

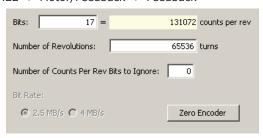
Tel: 781-828-8090

Page 14 of 38

Fax: 781-828-6547

FEEDBACK CONNECTIONS

PANASONIC INCREMENTAL A ENCODER


This is a "wire-saving" incremental encoder that sends serial data on a two-wire interface in the same fashion as an absolute encoder.

CME2 -> Basic setup -> Feedback

ABSOLUTE A ENCODER, TAMAGAWA, AND PANASONIC

CME2 -> Motor/Feedback -> Feedback

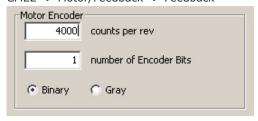
* 121Ω terminating resistor on user's PC board Incremental-A Accelnet Plus Module Encoder 1.2k SD 220 D-R 1.2k D-R Cmd +5\ V+ +5V ENC MAX3362B ΩV MAX3362 V.

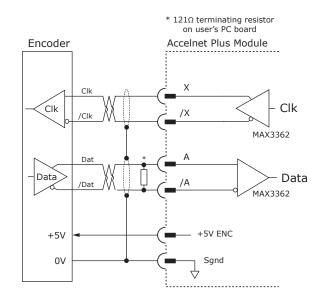
SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The Accelnet drive provides a train of clock signals in differential format (Clk, /Clk) to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. Data from the encoder in differential format (Dat, /Dat) MSB first. Binary or Gray encoding is selectable. When the LSB goes high and a dwell time has elapsed, data is ready to be read again.

PRIMARY FEEDBACK CONNECTIONS

The pins in the chart are on connector P4


Encoder	Drive	Axis A	Axis B	Axis C
Encoder	Drive	Pins	Pins	Pins
Enc S	Enc A	5	19	33
Enc /S	Enc /A	7	21	35
Enc X	Enc X	13	27	41
Enc /X	Enc /X	15	29	43
+5V Out		17	31	45
Signal (Gnd	1~4,18,32,46,56		6,56


SECONDARY FEEDBACK CONNECTIONS

The pins in the chart are on connector P4

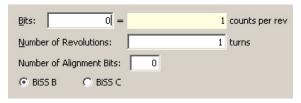
Functions	Drive	Axis A	Axis B	Axis C
Functions	Drive	Pins	Pins	Pins
Sec Enc S	Sec Enc A	6	20	34
Sec Enc /S	Sec Enc /A	8	22	36
Sec Enc X	Sec Enc X	14	28	42
Sec Enc /X	Sec Enc /X	16	30	44
+5 ENC		17	31	45
Signal	Gnd	1~4,18,32,46,56		6,56

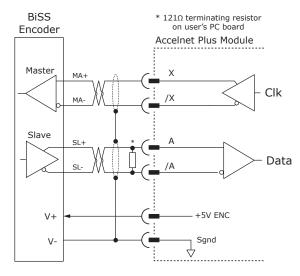
CME2 -> Motor/Feedback -> Feedback

Tel: 781-828-8090

FEEDBACK CONNECTIONS

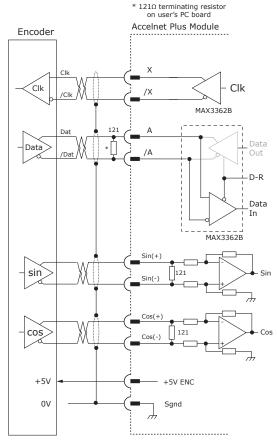
ENDAT ABSOLUTE ENCODER


The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals for synchronous digital, bidirectional data transfer. It also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable Use of sin/cos incremental signals is optional in the EnDat specification.


CME2 -> Motor/Feedback -> Feedback

BISS (B & C) ABSOLUTE ENCODER

CME2 -> Motor/Feedback -> Feedback



PRIMARY FEEDBACK CONNECTIONS

The pins in the chart are on connector P4

- P				
Encoder	Drive	Axis A	Axis B	Axis C
Encoder	Drive	Pins	Pins	Pins
Enc S	Enc A	5	19	33
Enc /S	Enc /A	7	21	35
Enc X	Enc X	13	27	41
Enc /X	Enc /X	15	29	43
+5V Out		17	31	45
Signal (Gnd	1~4,18,32,46,56		6,56

SIN/COS FEEDBACK CONNECTIONS

The Sin/Cos pins in this chart are on connector P3

F	Duissa	Axis A	Axis B	Axis C
Functions	Drive	Pins	Pins	Pins
Enc Sin(+)	Enc Sin(+)	9	13	17
Enc Sin(-)	Enc Sin(-)	10	14	18
Enc Cos(+)	Enc Cos(+)	11	15	19
Enc Cos(-) Enc Cos(-)		12	16	20
+5 ENC	17	31	45	
Signal Gno	1~4	,18,32,4	6,56	

SECONDARY FEEDBACK CONNECTIONS

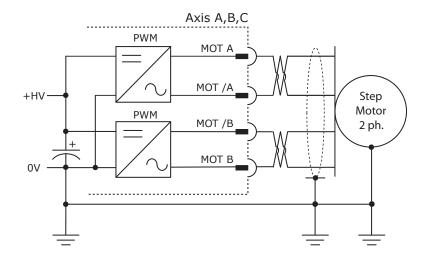
The pins in the chart are on connector P4

Tel: 781-828-8090

		Axis A	Axis B	Axis C
Functions	Drive	Pins	Pins	Pins
		PILIS	PILIS	PIIIS
Sec Enc S	Sec Enc A	6	20	34
Sec Enc /S	Sec Enc /A	8	22	36
Sec Enc X	Sec Enc X	14	28	42
Sec Enc /X Sec Enc /X		16	30	44
+5 E	17	31	45	
Signal	1~4	,18,32,4	6,56	

Page 16 of 38

Fax: 781-828-6547

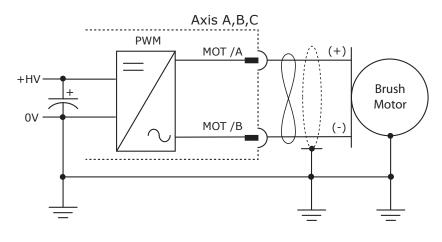


MOTOR CONNECTIONS

STEPPER MOTORS

The drive outputs are two H-bridge PWM inverters that convert the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options


SIGNALS & PINS

The pins in the chart are on connector P1

Output	Motor	Axis A	Axis B	Axis C
Output	MOTOL	Pins	Pins	Pins
Mot A	Α	21,22	37,38	53,54
Mot /A	/A	23,24	39,40	55,56
Mot B	В	29,30	45,46	61,62
Mot /B	/B	31,32	47,48	63,64
+HV	1,2,3,4,5,6			
HV COM	11,12,13,14,15,16			
+AuxHV	7			

BRUSH MOTORS

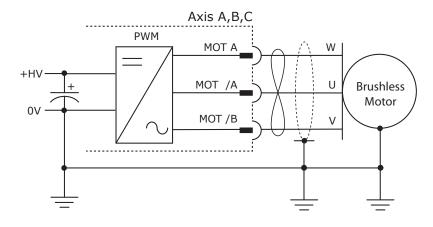
The drive outputs are an H-bridge PWM inverter that convert the DC bus voltage (+HV) into DC voltage waveforms that drive the motor (+) & (-) terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2

CME2 -> Basic Setup -> Motor Options

SIGNALS & PINS

The pins in the chart are on connector P1


0	Motor	Axis A	Axis B	Axis C
Output	Motor	Pins	Pins	Pins
Mot A	n/c			
Mot /A	(+)	23,24	39,40	55,56
Mot /B	(-)	31,32	47,48	63,64
+HV	1,2,3,4,5,6			
0V	11,12,13,14,15,16			
+AuxHV	7			

Page 17 of 38

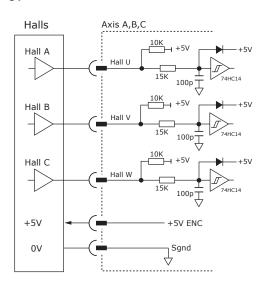
MOTOR CONNECTIONS

BRUSHLESS MOTORS

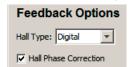
The drive outputs are a 3-phase PWM inverter that converts the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor U-V-W terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options

SIGNALS & PINS


The pins in the chart are on connector P1

Output	Motor	Motor Axis A		Axis C	
Output	MOTOL	Pins	Pins	Pins	
Mot A	W	21,22	37,38	53,54	
Mot /A	U	23,24	39,40	55,56	
Mot B	No Connection				
Mot /B	V	V 31,32 47,48		63,64	
+HV	1,2,3,4,5,6				
HV COM	11,12,13,14,15,16				
+AuxHV	7				


DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutationinitialization after startup, and for checking the motor phasing after the servo drive has switched to sinusoidal commutation.

HALL INPUTS 5V

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Feedback Options

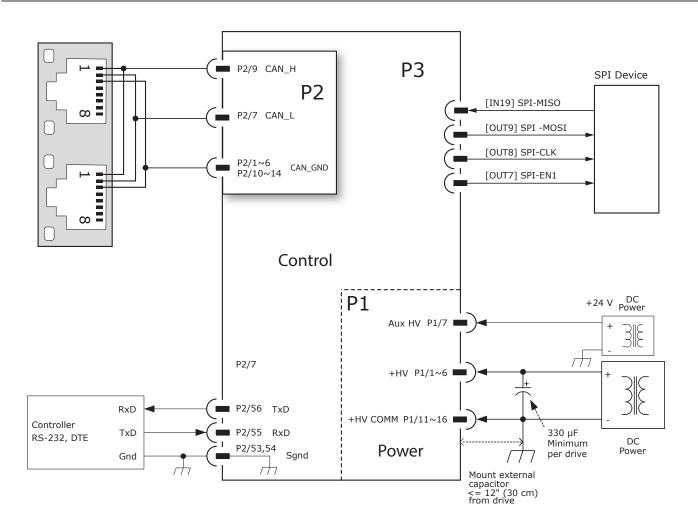
Note: Hall phase correction is optional

SIGNALS & PINS

The pins in the chart are on connector P4

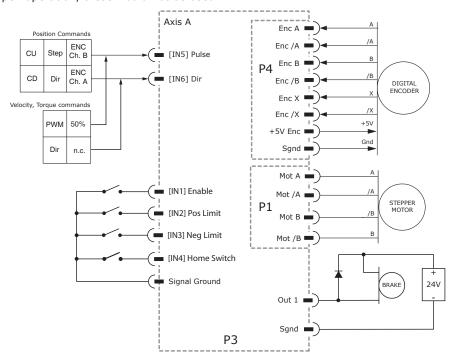
Functions	Axis A	Axis B	Axis C
	Pins	Pins	Pins
Hall U	47	50	53
Hall V	48	51	54
Hall W	49	52	55

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Fax: 781-828-6547 Tel: 781-828-8090 P/N 16-01568 Rev 00 Page 18 of 38



COMMON CONNECTIONS FOR ALL AXES

Tel: 781-828-8090 Fax: 781-828-6547 Page 19 of 38



TYPICAL CONNECTIONS

Here is an example using a stepper motor with encoder feedback, driving a linear stage with positive and negative limit switches, and a home switch. Position commands are shown as digital inputs. For CANopen operation, these would not be used.

Axis A is shown as an example. The tables below show the pins for the same-named signals for axes B, C, and D.

P3: INPUT SIGNALS & PINS

Functions		Functions Axis A		is A	Axis B		Axis C			
		runcu	IONS		Pins	Signal	Pins	Signal	Pins	Signal
		Enab	ole		23	[IN1]	29	[IN7]	35	[IN13]
Positive Limit Switch			24	[IN2]	30	[IN8]	36	[IN14]		
Negative Limit Switch			24	[IN3]	31	[IN9]	37	[IN15]		
	Home Switch				26	[IN4]	32	[IN10]	38	[IN16]
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	33	[IN11]	39	[IN17]
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	34	[IN12]	40	[IN18]

Notes:

- 1) Inputs functions shown for [IN1], [IN7], [IN13] are the default functions. These inputs are programmable if not used for these functions.
- 2) The functions shown for [IN5~6], [IN11~12], [IN17~18] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.
- 3) The functions shown for [IN2~4], [IN8~10], [IN14~16] are typical inputs. These inputs are programmable if not used for these functions.

P4: ENCODER SIGNALS & PINS

Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Enc A	5	19	33
Enc /A	7	21	35
Enc B	9	23	37
Enc /B	11	25	39
Enc X	13	27	41
Enc /X	15	29	43
+5 Vout	17	31	45
Sgnd	18	32	46

P3: MOSFET OUTPUTS & PINS

Output	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Fax: 781-828-6547 Tel: 781-828-8090 P/N 16-01568 Rev 00 Page 20 of 38

OUTPUTS

DIGITAL OUTPUTS 1~3

These are open-drain MOSFETs with 1 $k\Omega$ pull-up resistors in series with a diode to +5 Vdc. They can sink up to 300 mAdc from external loads operating from power supplies to +30 Vdc. The outputs are typically configured as drive fault and motor brake. Additional functions are programmable. As a drive fault output, the active level is programmable to be HI or LO when a fault occurs. As a brake output, it is programmable to be either HI or LO to release a motor brake when the drive is enabled. When driving inductive loads such as a relay, an external fly-back diode is required. A diode in the output is for driving PLC inputs that are opto-isolated and connected to +24 Vdc. The diode prevents conduction from +24 Vdc through the 1 $k\Omega$ resistor to +5 Vdc in the drive. This could turn the PLC input on, giving a false indication of the drive output state.

P3: MOSFET OUTPUTS & PINS

Output	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

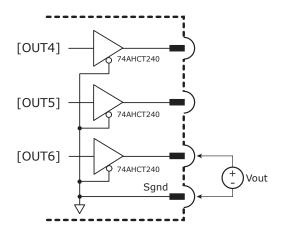
HIGH SPEED OUTPUTS

Digital outputs [OUT4~6] are HI-speed CMOS drivers.

P3: SPI PORT OUTPUTS & PINS

Output	P3 Pin
[OUT4]	46
[OUT5]	47
[OUT6]	48

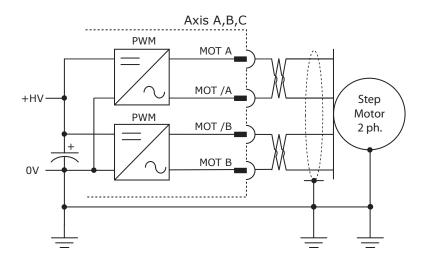
SPI PORT OUTPUTS


Digital outputs [OUT7~9] are CMOS drivers used for the SPI port. Programmable for other functions if not used for SPI port.

P3: SPI PORT OUTPUTS & PINS

Output	P3 Pin
[OUT7]	49
[OUT8]	50
[OUT9]	51

DRIVING INDUCTIVE LOADS


Tel: 781-828-8090 Fax: 781-828-6547

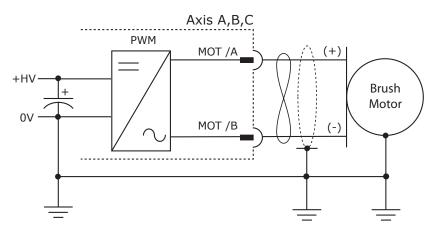
Page 21 of 38

MOTOR CONNECTIONS

STEPPER MOTORS

The drive outputs are two H-bridge PWM inverters that convert the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options



P1: STEPPER OUTPUTS & PINS

Output	Axis A	Axis B	Axis C
Output	Pins	Pins	Pins
Mot A	21,22	37,38	53,54
Mot /A	23,24	39,40	55,56
Mot B	29,30	45,46	61,62
Mot /B	31,32	47,48	63,64

BRUSH MOTORS

The drive outputs are an H-bridge PWM inverter that convert the DC bus voltage (+HV) into DC voltage waveforms that drive the motor (+) & (-) terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

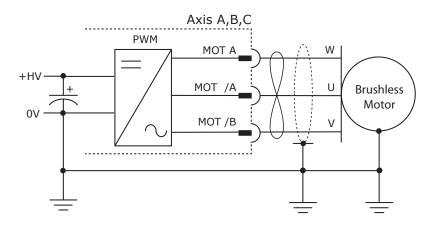
HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options

Motor Options Motor Family: C Brushless © Brush C Stepper Motor Type:

P1: BRUSH OUTPUTS & PINS

Outnut	Axis A	Axis B	Axis C
Output	Pins	Pins	Pins
Mot /A	23,24	39,40	55,56
Mot /B	31,32	47,48	63,64

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00


Tel: 781-828-8090 Fax: 781-828-6547

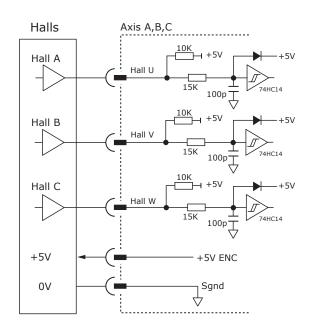
Page 22 of 38

MOTOR CONNECTIONS

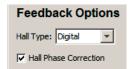
BRUSHLESS MOTORS

The drive outputs are a 3-phase PWM inverter that converts the DC bus voltage (+HV) into sinusoidal voltage waveforms that drive the motor U-V-W terminals. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal for best results.

HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Motor Options


P1: BRUSHLESS OUTPUTS & PINS

Output	Motor	Axis A	Axis B	Axis C
Output	MOTOL	Pins	Pins	Pins
Mot A	W	21,22	37,38	53,54
Mot /A	U	23,24	39,40	55,56
Mot B	Not used			
Mot /B	V	31,32	47,48	63,64


DIGITAL HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutationinitialization after startup, and for checking the motor phasing after the servo drive has switched to sinusoidal commutation.

HALL INPUTS

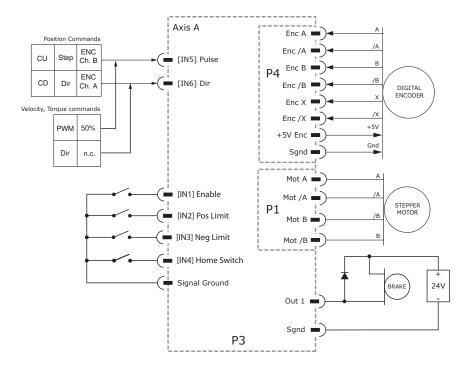
HOW IT LOOKS IN CME2 CME2 -> Basic Setup -> Feedback Options

Note: Hall phase correction is optional

P4: HALL INPUTS & PINS

Innut	Axis A	Axis B	Axis C
Input	Pins	Pins	Pins
Hall U	47	50	53
Hall V	48	51	54
Hall W	49	52	55

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Fax: 781-828-6547 Tel: 781-828-8090 P/N 16-01568 Rev 00 Page 23 of 38



TYPICAL CONNECTIONS

Here is an example using a stepper motor with encoder feedback, driving a linear stage with positive and negative limit switches, and a home switch. Position commands are shown as digital inputs. For CANopen operation, these would not be used.

Axis A is shown as an example. The tables below show the pins for the same-named signals for axes B, C, and D.

P3: INPUT SIGNALS & PINS

	Functions			Axi	s A	Axi	s B	Axi	s C	
		runcu	OHS		Pins	Signal	Pins	Signal	Pins	Signal
		Enab	ole		23	[IN1]	23	[IN7]	35	[IN13]
	Positive Limit Switch			24	[IN2]	24	[IN8]	36	[IN14]	
	Negative Limit Switch			24	[IN3]	24	[IN9]	37	[IN15]	
		Home S	witch		26	[IN4]	26	[IN10]	38	[IN16]
Enc A	Pulse	CW	PWM	PWM 50%	27	[IN5]	27	[IN11]	39	[IN17]
Enc B	Dir	CCW	Polarity	n/a	28	[IN6]	28	[IN12]	40	[IN18]

Notes:

- 1) Inputs functions shown for [IN1], [IN7], [IN13], and [IN19] are the default functions. These inputs are programmable if not used for these functions.
- 2) The functions shown for [IN5~6], [IN11~12], [IN17~18] and [IN23~24] apply when they are used as digital command inputs for position control. These inputs are programmable if not used for these functions.
- 3) The functions shown for [IN2~4] are typical inputs. These inputs are programmable if not used for these functions.

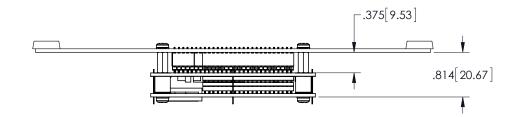
P4: ENCODER SIGNALS & PINS

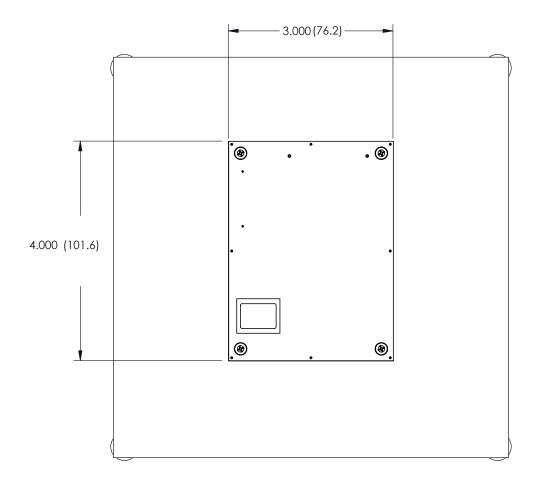
Functions	Axis A	Axis B	Axis C
Functions	Pins	Pins	Pins
Enc A	5	19	33
Enc /A	7	21	35
Enc B	9	23	37
Enc /B	11	25	39
Enc X	13	27	41
Enc /X	15	29	43
+5 Vout	17	31	45
Sgnd	18	32	46

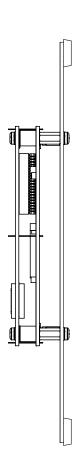
P3: MOSFET OUTPUTS & PINS

Output	P3 Pin
[OUT1]	43
[OUT2]	44
[OUT3]	45

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-01568 Rev 00 Page 24 of 38

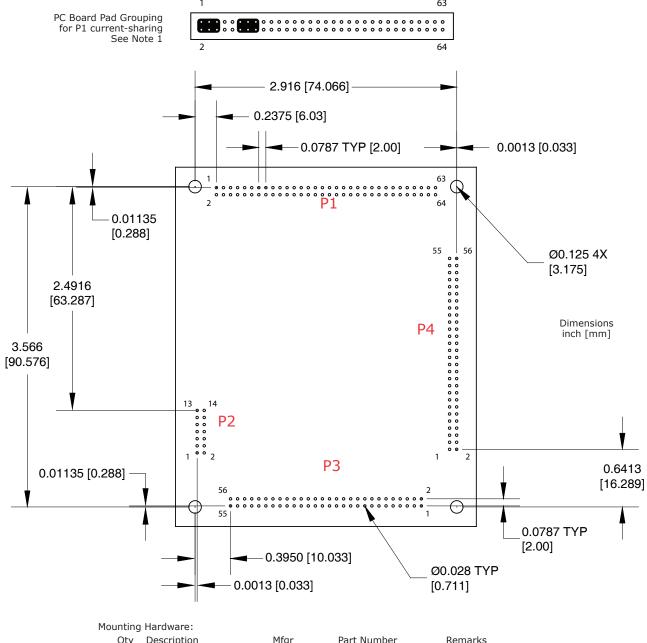






MODULE DIMENSIONS

Units in inch (mm)



PRINTED CIRCUIT BOARD FOOTPRINT

Dimensions are inch (mm)

TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

Qt	y Description	Mfgr	Part Number	Remarks
1	Socket Strip	Samtec	SQW-132-01-L-D	P1: HV, Aux, & Motor
1	Socket Strip	Samtec	SQW-107-01-L-D	P2: CANopen port
1	Socket Strip	Samtec	SQW-128-01-L-D	P3: Input/Output
1	Socket Strip	Samtec	SQW-128-01-L-D	P4: Feedback
2	Standoff 6-32 X 1/4"	PEM	KFE-632-8ET	

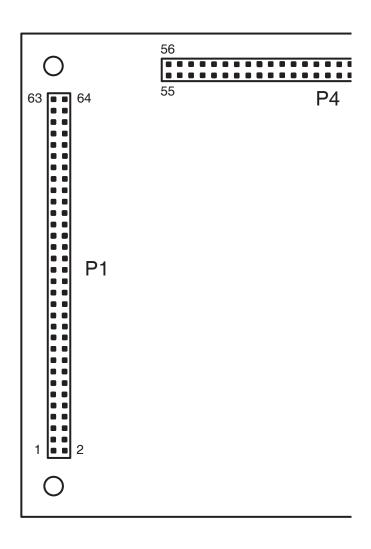
Notes

- $1.\ P1$ signals of the same name must be connected for current-sharing (see graphic above).
- To determine copper width and thickness for P1 signals refer to specification IPC-2221. (Association Connecting Electronic Industries, http://www.ipc.org)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Tel: 781-828-8090 Fax: 781-828-6547 Page 26 of 38

MOUNTING PC BOARD CONNECTORS & SIGNALS


P1 POWER

Mounting board connector: Samtec SQW-132-01-L-D

Axis	Signal	Р	in	Signal	Axis	
	Mot /B	63	64	Mot /B	1	
Axis-C	Mot B	61	62	Mot B	Axis-C	
		59	60		!	
No con	No connections		58	No conr	nections	
	Mot /A	57 55	56	Mot /A	I	
Axis-C	Mot A	53	54	Mot A	Axis-C	
		51	52			
No con	nections	49	50	No conr	nections	
A : D	Mot /B	47	48	Mot /B		
Axis-B	Mot B	45	46	Mot B	Axis-B	
NI		43	44	NI		
NO CON	nections	41	42	No conr	iections	
Avia D	Mot /A	39	40	Mot /A	Assis D	
Axis-B	Mot A	37	38	Mot A	Axis-B	
No con	nactions	35	36	No connections		
NO COIT	nections	33	34	INO COITI	iections	
Axis-A	Mot /B	31	32	Mot /B	Axis-A	
AXIS-A	Mot B	29	30	Mot B	AXIS-A	
No con	nections	27	28	No connections		
NO COIT		25	26	NO COM		
Axis-A	Mot /A	23	24	Mot /A	Axis-A	
AXIS A	Mot A	21	22	Mot A	AXIS A	
No con	nections	19	20	No conr	nections	
140 0011		17	18	No connections		
		15	16	[
HV	HV COM		14	HV (COM	
		11	12			
N.C.		9	10	N.	C.	
HV	aux	7	8	N.	C.	
		5	6	ļ		
+	HV	3	4	++	HV	
		1	2			

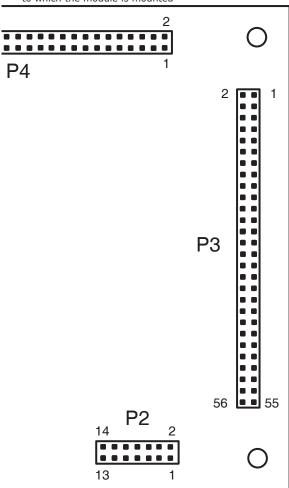
TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

CONNECTOR NAMING (P1, P2, ETC) APPLIES TO THE MP3 MODULE AND NOT TO PC BOARD MOUNTED SOCKETS

MOUNTING PC BOARD CONNECTORS & SIGNALS

P3 INPUT/OUTPUT


Mounting board connector: Samtec SQW-128-01-L-D

Signal Pin Signal Signal Gnd 2 1 Signal Gnd Axis-A Ref(-) 4 3 Axis-A Ref(+) Axis-B Ref(-) 6 5 Axis-B Ref(+) Axis-C Ref(-) 8 7 Axis-B Ref(+) Axis-A Sin(-) 10 9 Axis-A Sin(+) Axis-A Cos(-) 12 11 Axis-A Cos(+) Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Csin(-) 18 17 Axis-C Csin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN1] HS Axis-B Pulse HS [C:I	Signal		
Axis-A Ref(-) 4 3 Axis-A Ref(+) Axis-B Ref(-) 6 5 Axis-B Ref(+) Axis-C Ref(-) 8 7 Axis-C Ref(+) Axis-A Sin(-) 10 9 Axis-A Sin(+) Axis-A Cos(-) 12 11 Axis-A Cos(+) Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Signal	 		Signal
Axis-B Ref(-) 6 5 Axis-B Ref(+) Axis-C Ref(-) 8 7 Axis-C Ref(+) Axis-A Sin(-) 10 9 Axis-A Sin(+) Axis-B Sin(-) 12 11 Axis-A Cos(+) Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd				ļ <u>"</u>
Axis-C Ref(-) 8 7 Axis-C Ref(+) Axis-A Sin(-) 10 9 Axis-A Sin(+) Axis-B Sin(-) 12 11 Axis-A Cos(+) Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd		<u> </u>	<u> </u>	
Axis-A Sin(-) 10 9 Axis-A Sin(+) Axis-A Cos(-) 12 11 Axis-A Cos(+) Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-B Ref(-)	6	5	Axis-B Ref(+)
Axis-A Cos(-) 12 11 Axis-A Cos(+) Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-C Ref(-)	8	7	Axis-C Ref(+)
Axis-B Sin(-) 14 13 Axis-B Sin(+) Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-A Sin(-)	10	9	Axis-A Sin(+)
Axis-B Cos(-) 16 15 Axis-B Cos(+) Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-A Cos(-)	12	11	Axis-A Cos(+)
Axis-C Sin(-) 18 17 Axis-C Sin(+) Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-B Sin(-)	14	13	Axis-B Sin(+)
Axis-C Cos(-) 20 19 Axis-C Cos(+) Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-B Cos(-)	16	15	Axis-B Cos(+)
Signal Gnd 22 21 Signal Gnd HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-C Sin(-)	18	17	Axis-C Sin(+)
HS [IN2] 24 23 [IN1] HS Axis-A Enable HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-C Cos(-)	20	19	Axis-C Cos(+)
HS [IN4] 26 25 [IN3] HS Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Signal Gnd	22	21	Signal Gnd
Axis-A Dir HS [IN6] 28 27 [IN5] HS Axis-A Pulse HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [IN2]	24	23	[IN1] HS Axis-A Enable
HS [IN8] 30 29 [IN7] HS Axis-B Enable HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [IN4]	26	25	[IN3] HS
HS [IN10] 32 31 [IN9] HS Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-A Dir HS [IN6]	28	27	[IN5] HS Axis-A Pulse
Axis-B Dir HS [IN12] 34 33 [IN11] HS Axis-B Pulse HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [IN8]	30	29	[IN7] HS Axis-B Enable
HS [IN14] 36 35 [IN13] HS Axis-C Enable HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [IN10]	32	31	[IN9] HS
HS [IN16] 38 37 [IN15] HS Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-B Dir HS [IN12]	34	33	[IN11] HS Axis-B Pulse
Axis-C Dir HS [IN18] 40 39 [IN17] HS Axis-C Pulse Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [IN14]	36	35	[IN13] HS Axis-C Enable
Signal Gnd 42 41 Signal Gnd MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [IN16]	38	37	[IN15] HS
MOSFET [OUT2] 44 43 [OUT1] MOSFET HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Axis-C Dir HS [IN18]	40	39	[IN17] HS Axis-C Pulse
HS [OUT4] 46 45 [OUT3] MOSFET HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	Signal Gnd	42	41	Signal Gnd
HS [OUT6] 48 47 [OUT5] HS SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	MOSFET [OUT2]	44	43	[OUT1] MOSFET
SPI-CLK HS [OUT8] 50 49 [OUT7] HS SPI-EN1 SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [OUT4]	46	45	[OUT3] MOSFET
SPI-MISO [IN19] 52 51 [OUT9] HS SPI-MOSI Signal Gnd 54 53 Signal Gnd	HS [OUT6]	48	47	[OUT5] HS
Signal Gnd 54 53 Signal Gnd	SPI-CLK HS [OUT8]	50	49	[OUT7] HS SPI-EN1
	SPI-MISO [IN19]	52	51	[OUT9] HS SPI-MOSI
RS-232 TxD 56 55 RS-232 RxD	Signal Gnd	54	53	Signal Gnd
	RS-232 TxD	56	55	RS-232 RxD

Signal names in this chart are default settings for brushless motors with Halls, position mode, and command source from digital inputs. Digital inputs [IN1~IN19] are programmable for other functions. Outputs [OUT1~OUT9] are programmable for other functions.

TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

CONNECTOR NAMING (P1, P2, ETC) APPLIES TO THE MP3 MODULE AND NOT TO PC BOARD **MOUNTED SOCKETS**

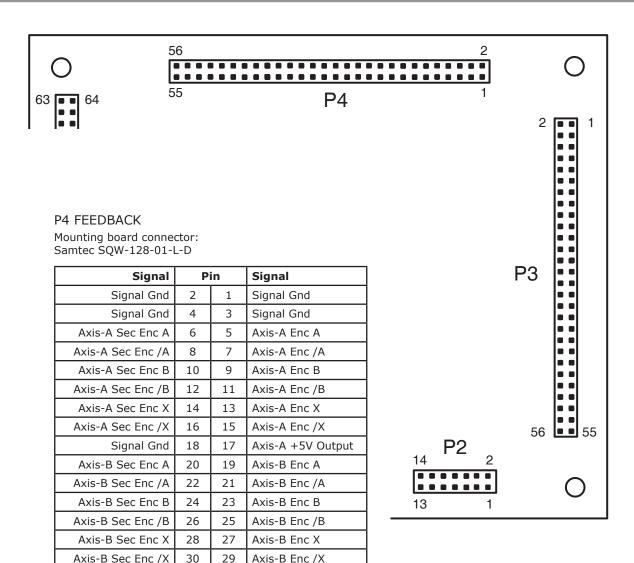
Mounting board connector: Samtec SQW-107-01-L-D

P2 CAN PORT

Signal	P	in	Signal
CAN_GND	2	1	CAN_GND
CAN_GND	4	3	CAN_GND
CAN_GND	6	5	CAN_GND
CAN_GND	8	7	CAN_L
CAN_GND	10	9	CAN_H
CAN_GND	12	11	CAN_GND
CAN_GND	14	13	CAN_GND

Tel: 781-828-8090

Fax: 781-828-6547 Page 28 of 38



MOUNTING PC BOARD CONNECTORS & SIGNALS

30

32

34

36

38

40

42

44

46

48

50

52

54

56

Signal Gnd

Axis-C Sec Enc A

Axis-C Sec Enc /A

Axis-C Sec Enc B

Axis-C Sec Enc /B

Axis-C Sec Enc X

Axis-C Sec Enc /X

Signal Gnd

Axis-A Hall-V

Axis-B Hall-U

Axis-B Hall-W

Axis-C Hall-V

Signal Gnd

29

31

33

35

37

39

41

43

45

47

49

51

53

55

Axis-B Enc /X

Axis-C Enc A

Axis-C Enc /A

Axis-C Enc B

Axis-C Enc /B

Axis-C Enc X

Axis-C Enc /X

Axis-A Hall-U

Axis-A Hall-W

Axis-B Hall-V

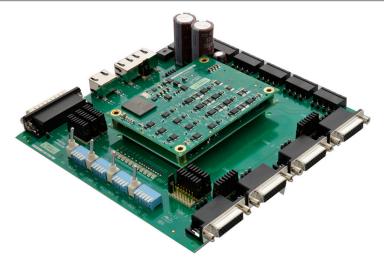
Axis-C Hall-U

Axis-C Hall-W

Axis-C +5V Output

Axis-B +5V Output

Fax: 781-828-6547 Tel: 781-828-8090 Page 29 of 38

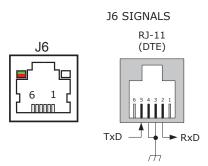


DEVELOPMENT KIT

DESCRIPTION

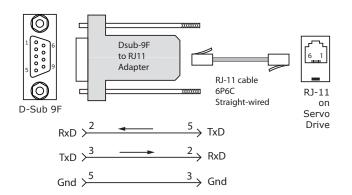
The Development Kit provides mounting and connectivity for one MP3 drive. Solderless jumpers ease configuration of inputs and outputs to support their programmable functions. Switches can be jumpered to connect to digital inputs $1{\sim}19$ so that these can be toggled to simulate equipment operation. LED's provide status indication for the digital outputs, encoder A/B/X/S signals, and Hall signals. Test points are provided for these signals, too, making it easy to monitor these with an oscilloscope.

Dual CANopen connectors make daisy-chain connections possible so that other CANopen devices such as Copley's Accelnet Plus or Xenus Plus CANopen drives can easily be connected. Rotary switches are provided to set the CANopen slave Node-ID (address).



RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME 2^{TM} software communicates with the drive over this link and is then used for complete drive setup. The CANopen Node-ID that is set by the rotary switch can be monitored, and a Node-ID offset programmed as well.


The RS-232 connector, J6, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

The LED on J6 is for the CANopen network status of Axis C and is not associated with the RS-232 port function.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector J8 on the Development Kit. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the DevKit. The connections are shown in the diagram below.

Tel: 781-828-8090

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an MP3 Development Kit!

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Fax: 781-828-6547 Page 30 of 38

DEVELOPMENT KIT INDICATORS (LEDS)

The AMP status LEDs DS10~12 at switches SW1, 7, and 13 show the operational state of each axis of the MP3. The STATUS LEDs on J5~J6 show the state of the CANopen NMT (Network Management) state-machines of each axis in the drive. Details on the NMT state-machine can be found in the CANopen Programmers Manual, §3.1: http://www.copleycontrols.com/Motion/pdf/CANopenProgrammersManual.pdf

AMP LEDS

Three bi-color LEDs show the states of each axis of the MP3 by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

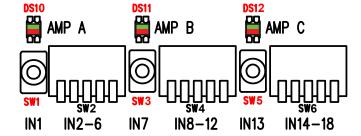
• Green/Solid: Drive OK and enabled. Will run in response to reference inputs or CANopen commands.

• Green/Slow-Blinking: Drive OK but NOT-enabled. Will change to Green/Solid when enabled.

• Green/Fast-Blinking: Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch.

• Red/Solid: Transient fault condition. Drive will resume operation when fault is removed.

• Red/Blinking: Latching fault. Operation will not resume until drive is Reset.


Drive Fault conditions. Faults are programmable to be either transient or latching:

- Over or under-voltage
- Motor over-temperature
- Encoder +5 Vdc fault
- · Short-circuits from output to ground

• Drive over-temperature

Tel: 781-828-8090

- Internal short circuits
- · Short-circuits from output to output

STATUS LEDS

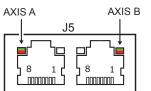
Three bi-color LEDs on J9 & J4 give the state of the NMT state-machine of each axis by changing color, and either blinking or remaining solid. The possible color and blink combinations are:

RUN (GREEN)

Off Init
 Blinking Pre-operational
 Single-flash Stopped
 On Operational

ERROR (RED)

• Off No error


• Blinking Invalid configuration, general configuration error

• Single Flash Warning limit reached

• Triple Flash Sync message not received within the configured period

• On Bus Off, the CAN master is bus off

NETWORK STATUS LEDs

Note: Red & green led on-times do not overlap.

LED color may be red, green, off, or flashing of either color.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Fax: 781-828-6547 Page 31 of 38

DEVELOPMENT KIT CANOPEN NODE ID (ADDRESS)

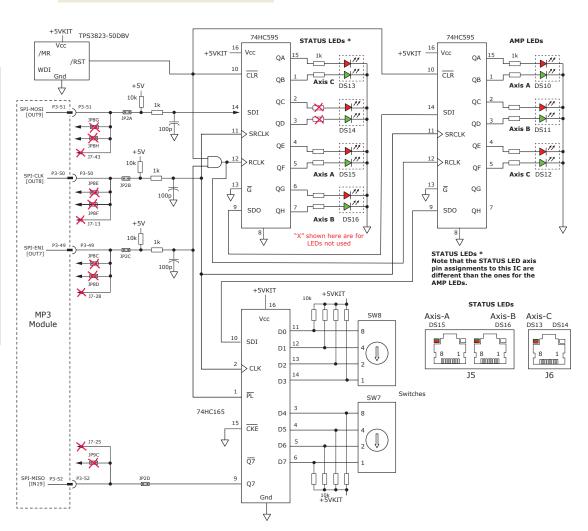
On a CANopen network, each device must have unique, non-zero Node-ID. In the MP3 DevKit, this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Node-ID of the drive's Axis A from $0x01\sim0xFF$ ($1\sim255$ decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Node-ID 107 (0x6B):

- 1) Find the highest number under SW21 that is less than 107 and set SW21 to the hex value in the same row: 96 < 107 and 112 > 107, so SW21 = 96 = Hex 6
- 2) Subtract 96 from the desired Node-ID to get the decimal value of switch SW22 and set SW22 to the Hex value in the same row: SW22 = (107 96) = 11 = Hex B
- 3) This example will produce the following CAN addresses for the MP3: Axis A = 107 (0x6B), Axis B = 108 (0x6C), Axis C = 109 (0x6D), Axis D = 110 (0x6E)

CME2 -> Amplifier -> Network Configuration

SW7 SW8



CME2 -> Input/Output -> Digital Outputs

CANopen Node-ID Switch Decimal values

	SW2	SW3
HEX	DE	EC
0	0	0
1	16	1
2	32	2
3	48	3
4	64	4
5	80	5
6	96	6
7	112	7
8	128	8
9	144	9
А	160	10
В	176	11
С	192	12
D	208	13
E	224	14
F	240	15

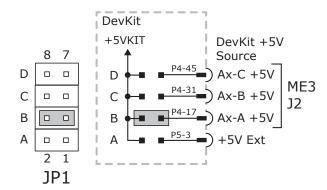
CANopen NODE-ID (ADDRESS) SWITCH CONNECTIONS

This graphic shows the connections to the CANopen Node-ID switches and to the status LEDs for the MP3 and CANopen. The switches are read once after the drive is reset, or powered-on. When changing the settings of the switches, be sure to either reset the drive, or to power it off-on. Outputs [OUT7,8,9] and input [IN19] operate as an SPI (Switch & LED Interface) port which reads the settings on the CANopen Node-ID switches, and controls the LEDs on the serial and CANopen port connectors. The jumpers marked with red "X" should be removed so that SW18, or external connections to the signals do not interfere with the operation of the SPI port.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Tel: 781-828-8090 Fax: 781-828-6547 Page 32 of 38

DEVELOPMENT KIT+5V POWER


The encoder +5VENC power on the feedback connectors J5~J7 is connected directly to the Ax-A, Ax-B, and Ax-C power outputs from the MP3.

The SPI port components on the DevKit that drive the LEDs and read the Node-ID (address) switches connects to the signal +5VKIT. And the +5VKIT connects to a jumper on JP1 that selects a source of the +5V power. This can be powered from either the Ax-A Ax-B, and Ax-C +5V power from the MP3, or from an external +5V power supply that connects to P5-3.

The default "A" position (on JP1 pins 1~2) selects the external +5V power source for +5VKIT.

Moving the jumper to the B, C, or D positions (pins 3~4, 5~6, 7~8) selects the axis +5V from the MP3 as the power source for the +5VKIT.

As noted below, only one jumper should be used to select the source of power for +5VKIT.

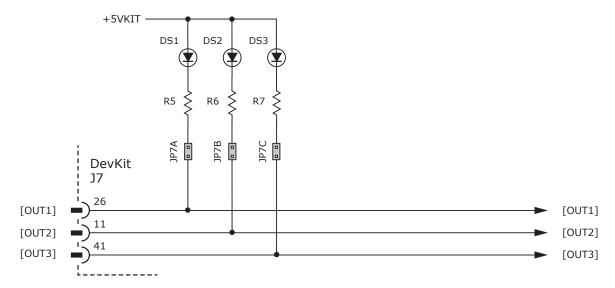
IMPORTANT: ONLY ONE SHORTING PLUG CAN BE USED ON JP1

USE OF MORE THAN ONE PLUG WILL DAMAGE 5V POWER SUPPLIES IN THE MP3

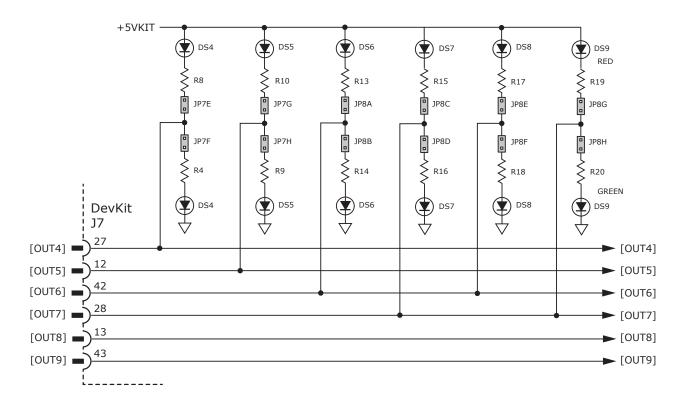
THE POSITION OF THE JUMPER AT JP1-B IS THE DEFAULT
THIS WILL POWER THE ON-BOARD CIRCUITS FROM AN ENCODER +5V OUTPUT

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01568 Rev 00

Tel: 781-828-8090 Fax: 781-828-6547 Page 33 of 38



DEVELOPMENT KIT OUTPUTS

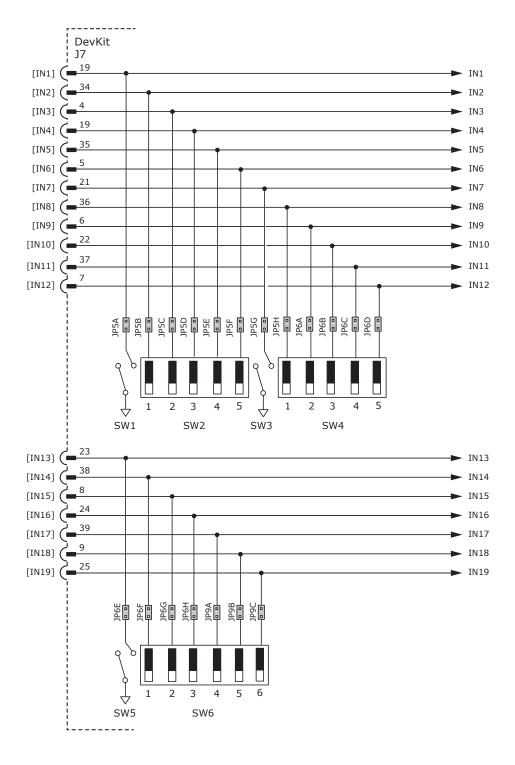

MOSFET OUTPUTS

There are three MOSFET outputs that can drive controller logic inputs or relays. If relays are driven, then flyback diodes must be connected across their terminals to clamp overvoltages that occur when the inductance of the relay coil is suddenly turned off. LED indicators connected to the outputs will be ON when the output is MOSFET is ON and the output voltage will be near OV. Outputs 1,2, & 3 are MOSFET types that sink current when ON, and appear as open-circuit when OFF. When these outputs are ON a red LED is turned on. When the outputs are OFF, the red LED is off. The green LED is not used on these outputs.

LOGIC OUTPUTS

Outputs 4~9 are CMOS types that pull up to 5V or down to ground. When these outputs go high it turns on the green LED. When they are low, the red LED is turned on.

Fax: 781-828-6547 Tel: 781-828-8090 Page 34 of 38


DEVELOPMENT KIT LOGIC INPUTS & SWITCHES

LOGIC INPUTS & SWITCHES

The Development Kit has jumpers that can connect the MP3 digital inputs to switches on the kit, or to the Control connector J7.

As delivered, all of these jumpers are installed as shown. If connecting to external devices that actively control the level of an input, it is desirable to disconnect the switch which could short the input to ground.

For example, if [IN1] is connected to an external device for the Enable function, then jumper JP5A should be removed to take the switch SW1 out of the circuit. The figure below shows these connections.

Tel: 781-828-8090 Fax: 781-828-6547 Page 35 of 38

DEVELOPMENT KIT CONNECTORS

The Development Kit mounts a single MP3 module and enables the user to test and operate the MP3 before it is mounted onto a PC board in the target system.

J11 J10 J9 AXIS A AXIS B AXIS C FEEDBACK

PIN	SIGNAL	PIN	PIN SIGNAL		SIGNAL
26	Signal Gnd	18	Sin(-)	9	Enc X
25	Signal Gnd	17	+5VENC	8	Enc /X
24	N.C.	16	Signal Gnd	7	Motemp *
23	N.C.	15	Enc S (A) **	6	+5VENC
22	N.C.	14	Enc /S (/A) **	5	Signal Gnd
21	Cos(+)	13	Enc A	4	Hall W
20	Cos(-)	12	Enc /A	3	Hall V
19	Sin(+)	11	Enc B	2	Hall U
		10	Enc /B	1	Frame Gnd

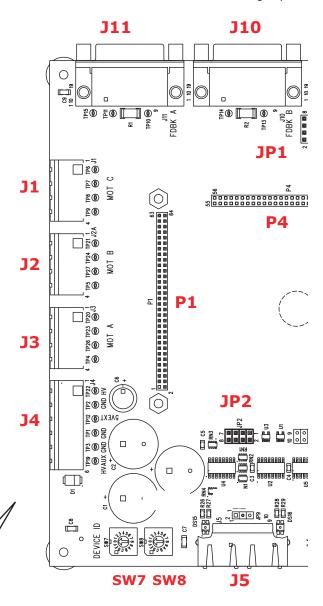
^{**} Motors with absolute encoders using the S & /S channels already wired to pins 14 & 15 of the feedback connectors will be connected internally to the A & /A signals which have the same function for encoder data.

This shows the Motemp signals on the axis feedback connectors $J9\sim J11$, and the MP3 pins they connect to.

Function	Axis A	Axis B	Axis C	Conn	
Motomo	Motomp 28		40		
Motemp	IN6	IN12	IN18	Р3	
Jumper	JP4-A	JP4-B	JP4-C		

J1: AXIS C MOTOR

J2: AXIS B MOTOR

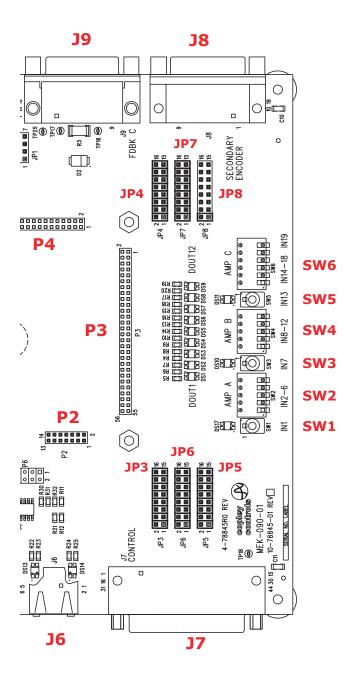

J2: AXIS A MOTOR

Connector, Euro, 4 Terminal, 5.08 mm

Signal	Pin
Motor A	1
Motor /A	2
Motor B	3
Motor /B	4

J4: HV, AUX, GND Connector, Euro, 5 Terminal, 5.08 mm

Signal	Pin
+HV	1
HV Gnd	2
+5V Ext	3
Sgnd	4
HV Gnd	5
HV Aux	6



Tel: 781-828-8090

Fax: 781-828-6547

Page 36 of 38

DEVELOPMENT KIT CONNECTORS

SW 1,3,5: ENABLE INPUTS

Axis ->	Axis A	Axis B	Axis C
Enable	SW1	SW3	SW5
Input	[IN1]	[IN7]	[IN13]
Jumper	JP5-A	JP5-G	JP6-E

DIP SWITCH INPUT CONNECTIONS

SW# / Axis ->	SW2 / A		SW4 / B		SW6 / C	
1	[IN2]	JP5-B	[IN8]	ЈР5-Н	[IN14]	JP6-F
2	[IN3]	JP5-C	[IN9]	JP6-A	[IN15]	JP6-G
3	[IN4]	JP5-D	[IN10]	ЈР6-В	[IN16]	JP6-H
4	[IN5]	JP5-E	[IN11]	JP6-C	[IN17]	JP3-A
5	[IN6]	JP5-F	[IN12]	JP6-D	[IN18]	ЈРЗ-В
6	SW6 is	not on th	[IN19]	JP3-C		

J8 SECONDARY FEEDBACK

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
26	Ax-C Enc B	18	Ax-C /B	9	Ax-C Enc X
25	Ax-C Enc A	17	Ax-C /A	8	Ax-C Enc /X
24	Signal Gnd	16	Ax-C +5V	7	Signal Gnd
23	Ax-B Enc B	15	Ax-B Enc /B	6	Ax-B Enc /X
22	Ax-B Enc A	14	Ax-B Enc /A	5	Ax-B Enc X
21	Signal Gnd	13	Ax-B +5V	4	Signal Gnd
20	Ax-A Enc B	12	Ax-B Enc /B	3	Ax-A Enc /X
19	Ax-A Enc A	11	Ax-A Enc /A	2	Ax-A Enc X
		10	Ax-A +5V	1	Frame Gnd

J7: CONTROL

PIN	SIGNAL	PIN	SIGNAL		
15	Signal Gnd	30	Ax-A +5V	PIN	SIGNAL
14	N.C.	29	Ax-C +5V	44	Ax-B +5V
13	[OUT8]	28	[OUT7]	43	[OUT9]
12	[OUT5]	27	[OUT4]	42	[OUT6]
11	[OUT2]	26	[OUT1]	41	[OUT3]
10	Signal Gnd	25	[IN19]	40	Signal Gnd
9	[IN18]	24	[IN16]	39	[IN17]
8	[IN15]	23	[IN13]	38	[IN14]
7	[IN12]	22	[IN10]	37	[IN11]
6	[IN9]	21	[IN7]	36	[IN8]
5	[IN6]	20	[IN4]	35	[IN5]
4	[IN3]	19	[IN1]	34	[IN2]
3	Ax-C Ref(-)	18	Ax-B Ref(-)	33	Signal Gnd
2	Ax-C Ref(+)	17	Ax-B Ref(+)	32	Ax-A Ref(-)
1	Frame Gnd	16	Signal Gnd	31	Ax-A Ref(+)

ORDERING INFORMATION

MASTER ORDERING GUIDE

MP3-090-10	Multinet Plus MP3 stepper drive, 5/10A, 14~90 Vdc
MPK-090-03	Development Kit for Multinet Plus MP3

	Qty	Ref	Name	Description	Manufacturer P/N
	1	1 J4 +HV & Aux		Connector, Euro, 6 Terminal, 5.08 mm	TE Buchanan: 796635-6
	3	J1~J3	Motor	Connector, Euro, 4 Terminal, 5.08 mm	TE Buchanan: 796635-4
	1	J7	Control	44 Pin Connector, High Density, D-Sub, Female, Solder Cup	Norcomp: 180-044-203L001
Connector Kit				44 Pin Connector Backshell	Norcomp: 979-025-020R121
for Development Kit MPK-CK-03	3	J9~J11 Feedback J8 Secondary Feedback		26 Pin Connector, High Density, D-Sub, Male, Solder Cup	Norcomp: 180-026-103L001
	3			26 Pin Connector Backshell	Norcomp: 979-015-020R121
	1			26 Pin Connector, High Density, D-Sub, Female, Solder Cup	Norcomp: 180-026-203L001
	1			26 Pin Connector Backshell	Norcomp: 979-015-020R121
SER-CK	1	J4	RS-232	Serial Cable Kit	

16-01568 Document Revision History

10 01300 L	ocument Revision mistory	
Revision	Date	Remarks
00	April 26, 2017	Preliminary version

Tel: 781-828-8090

Note: Specifications subject to change without notice

Fax: 781-828-6547 Page 38 of 38